1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry [639]
3 years ago
11

You can see lightning before you can hear the thunder. Which is the best explanation for this?

Physics
2 answers:
liubo4ka [24]3 years ago
8 0
Salutations!

<span>You can see lightning before you can hear the thunder. Which is the best explanation for this?

The best explanation for this statement is the transmission of light in air is faster than the transmission of sound in the air. Light is faster than sound, thus you can see the thunder then you can hear the sound.

Hope I helped :D</span>
ser-zykov [4K]3 years ago
8 0
The transmission of light in air is faster than the transmission of sound in air
You might be interested in
How do you measure the wavelength of a wave?
antiseptic1488 [7]

Answer: velocity divided by frequency

Explanation: wave speed or velocity measured in meters per second divided by frequency of wave measured in hz

4 0
3 years ago
Read 2 more answers
Air that enters the pleural space during inspiration but is unable to exit during expiration creates a condition called a. open
sertanlavr [38]

Answer:

The correct answer is d. tension pneumothorax.

Explanation:

The increasing build-up of air that is in the pleural space is what we call the tension pneumothorax and this happens due to the lung laceration that lets the air to flee inside the pleural space but it does not return.

4 0
3 years ago
A race car accelerates from 16.5 m/s to 45.1 m/s in 2.27 seconds. Determine the acceleration of the car.
ioda

Answer:

12.6

Explanation:

4 0
3 years ago
Prove that..<br>please help<br>​
GaryK [48]

\large{ \boxed{ \bf{ \color{red}{Universal \: law \: of \: gravitation}}}}

Every object in the universe attracts every other object with a force which is proportional to the product of their masses and inversely proportional to the square of the distance between them. The forces along the line joining the centre of the two objects.

❍ Let us consider two masses m1 and m2 line at a separation distance d. Let the force of attraction between the two objects be F.

According to universal law of gravitation,

\large{ \longrightarrow{ \rm{F \propto m_1 m_2}}}

Also,

\large{ \longrightarrow{ \rm{ F \propto  \dfrac{1}{ {d}^{2} } }}}

Combining both, We will get

\large{ \longrightarrow{ \rm{F  \propto  \dfrac{ m_1 m_2}{ {d}^{2}}}}}

Or, We can write it as,

\large{ \longrightarrow{ \rm{F  \propto  \:  G \dfrac{ m_1 m_2}{ {d}^{2} }}}}

Where, G is the constant of proportionality and it is called 'Universal Gravitational constant'.

☯️ Hence, derived !!

<u>━━━━━━━━━━━━━━━━━━━━</u>

8 0
3 years ago
A wall in a house contains a single window. The window consists of a single pane of glass whose area is 0.15 m2 and whose thickn
KengaRu [80]

Answer:

88 %

Explanation:

The rate of heat loss by a conducting material of thermal conductivity K, cross-sectional area,A and thickness d with a temperature gradient ΔT is given by

P = KAΔT/d

The total heat lost by the styrofoam wall is P₁ = K₁A₁ΔT₁/d₁ where K₁ =thermal conductivity of styrofoam wall 0.033 W/m-K, A₁ = area of styrofoam wall = 17 m², ΔT₁ = temperature gradient between inside and outside of the wall and d₁ = thickness of styrofoam wall = 0.20 m

The total heat lost by the glass window is P₂ = K₂A₂ΔT₂/d₂ where K₂ =thermal conductivity of glass window pane wall 0.96 W/m-K, A₂ = area of glass window pane = 0.15 m², ΔT₂ = temperature gradient between inside and outside of the window and d₂ = thickness of glass window pane = 7 mm = 0.007 m

The total heat lost is P = P₁ + P₂ = K₁A₁ΔT₁/d₁ + K₂A₂ΔT₂/d₂

Now, since the temperatures of both inside and outside of both window and wall are the same, ΔT₁ = ΔT₂ = ΔT

So, P = K₁A₁ΔT/d₁ + K₂A₂ΔT/d₂

Since P₂ = K₂A₂ΔT₂/d₂ = K₂A₂ΔT/d₂is the heat lost by the window, the fraction of the heat lost by the window from the total heat lost is

P₂/P = K₂A₂ΔT/d₂ ÷ (K₁A₁ΔT/d₁ + K₂A₂ΔT/d₂)

= 1/(K₁A₁ΔT/d₁÷K₂A₂ΔT/d₂ + 1)

= 1/(K₁A₁d₂÷K₂A₂d₁ + 1)

= 1/[(0.033 W/m-K × 17 m² × 0.007 m ÷ 0.96 W/m-K × 0.15 m² × 0.20 m) + 1]

= 1/(0.003927/0.0288 + 1)

= 1/(0.1364 + 1)

= 1/1.1364

= 0.88.

The percentage is thus P₂/P × 100 % = 0.88 × 100 % = 88 %

The percentage of heat lost by window of the total heat is 88 %

6 0
3 years ago
Other questions:
  • A 4.0 kg model rocket is launched, shooting 50.0 g of burned fuel from its exhaust at
    6·1 answer
  • Two masses exert a force of 1,161 N on each other when they are 20 km apart. How much force will these two masses exert on each
    12·1 answer
  • Imagine that you are able to go on a fishing trip that you have always wanted to. Your friend gets a bite that exerts a force of
    10·1 answer
  • Which of the following will attract one another? A. The north pole of magnet and the south pole of another magnet B. The north p
    9·1 answer
  • A point charge with a charge q1 = 2.30 μC is held stationary at the origin. A second point charge with a charge q2 = -5.00 μC mo
    15·2 answers
  • The rate constant for this first‑order reaction is 0.150 s−1 at 400 ∘C. A⟶products How long, in seconds, would it take for the c
    13·1 answer
  • The teacher prepares 2.50 liters (L) of a salt solution for a class experiment. How many quarts (qt) are in 2.50 L? (1 quart =0.
    15·2 answers
  • An object with a mass of 7.60 kg is moving to the right and experiences an applied force of 50 N to the right. The friction forc
    13·1 answer
  • You are helping your friend move a new refrigerator into his kitchen. You apply a horizontal force of 275 N in the positive x di
    12·1 answer
  • What is an effect of La Nina?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!