M = 7.0 kg, the mass of the groceries
h = 1.2 m, the elevation of the bag of groceries
The bag of groceries moves a constant velocity over the 2.7-m room.
At constant velocity, there is no applied force, and the kinetic energy remains constant.
At an elevation of 1.2 m, there is an increase in PE (potential energy) given by
V = m*g*h
= (7.0 kg)*(9.8 m/s²)*(1.2 m)
= 82.32 J
The change in PE is equal to the work done.
Answer: 82.3 J
The Young modulus E is given by:

where
F is the force applied
A is the cross-sectional area perpendicular to the force applied

is the initial length of the object

is the increase (or decrease) in length of the object.
In our problem,

is the initial length of the column,

is the Young modulus. We can find the cross-sectional area by using the diameter of the column. In fact, its radius is:

and the cross-sectional area is

The force applied to the column is the weight of the load:

Now we have everything to calculate the compression of the column:

So, the column compresses by 1.83 millimeters.
Answer: A Motor converts electrical energy into kinetic energy, the opposite of a generator, which converts kinetic energy to electrical energy.