1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Firdavs [7]
3 years ago
6

What would the force be if the separation between the two charges in the top window was adjusted to 8.19 ✕10-11 m? (The animatio

n will not adjust that far--you will have to calculate the answer).
q1 = q2 = 1.00 ✕ e
Physics
1 answer:
dalvyx [7]3 years ago
3 0

The electrostatic force between the two charges is 3.4\cdot 10^{-8}N

Explanation:

The electrostatic force between two charges is given by Coulomb's law:

F=k\frac{q_1 q_2}{r^2}

where:

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q_1, q_2 are the two charges

r is the separation between the two charges

In this problem, we have the following data:

q_1 = q_2 = 1.00e is the magnitude of the two charges, where

e=1.6\cdot 10^{-19}C is the fundamental charge

r=8.19\cdot 10^{-11}m is the separation between the two charges

Substutiting into the equation, we find the force:

F=(8.99\cdot 10^9)\frac{(1.00\cdot 1.6\cdot 10^{-19})^2}{(8.19\cdot 10^{-11})^2}=3.4\cdot 10^{-8}N

Learn more about electric force:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

You might be interested in
Ah electron is a negatively charged particle that has a charge of magnitude, e - 1.60 x 10-19 C. Which one of the following stat
Advocard [28]

Answer:

The correct statement is "The electric field is directed toward the electron and has a magnitude of \rm \dfrac{ke}{r^2} ".

Explanation:

According to Coulomb's law, the magnitude of the electric field due to a static point charge q at a point r distance away from it is given by

\rm E = \dfrac{k|q|}{r^2}.

  • k is the Coulmob's constant.

The direction of the electric field along the line joining the charge and the point where electric field is to be found and it is directed from positive charge to negative charge.

Conventionally, we assume a positive test charge placed at the point where electric field is to be found, the test charge has very small charge such that its charge does not affect the electric field due to the given charge.

The charge on the electron = -e.

The electric field due to an electron is given by

\rm E = \dfrac{k|-e|}{r^2}=\dfrac{ke}{r^2}.

The direction of this electric field is from positive test charge, placed at the point where electric field is to be found, towards the electron along the line joining the two.

Thus, the correct statement is "The electric field is directed toward the electron and has a magnitude of \rm \dfrac{ke}{r^2} ".

5 0
3 years ago
A girl pushes a 1.04 kg book across a table with a horizontal applied force 10 points
mr Goodwill [35]

Answer:

Approximately 11.0\; \rm m \cdot s^{-1}. (Assuming that g = 9.81 \; \rm N \cdot kg^{-1}, and that the tabletop is level.)

Explanation:

Weight of the book:

W = m \cdot g = 1.04 \; \rm kg \times 9.81\; \rm N \cdot kg^{-1} \approx 10.202\; \rm N.

If the tabletop is level, the normal force on the book will be equal (in magnitude) to weight of the book. Hence, F(\text{normal force}) \approx 10.202\; \rm N.

As a side note, the F_N and W on this book are not equal- these two forces are equal in size but point in the opposite directions.

When the book is moving, the friction F(\text{kinetic friction}) on it will be equal to

  • \mu_{\rm k}, the coefficient of kinetic friction, times
  • F(\text{normal force}), the normal force that's acting on it.

That is:

\begin{aligned}& F(\text{kinetic friction}) \\ &= \mu_{\rm k}\cdot F(\text{normal force})\\ &\approx 0.35 \times 10.202\; \rm N \approx 3.5708\; \rm N\end{aligned}.

Friction acts in the opposite direction of the object's motion. The friction here should act in the opposite direction of that 15.0\; \rm N applied force. The net force on the book shall be:

\begin{aligned}& F(\text{net force})  \\ &= 15.0 \; \rm N - F(\text{kinetic friction}) \\& \approx 15.0 - 3.5708\; \rm N \approx 11.429\; \rm N\end{aligned}.

Apply Newton's Second Law to find the acceleration of this book:

\displaystyle a = \frac{F(\text{net force})}{m} \approx \frac{11.429\; \rm N}{1.04\; \rm kg} \approx 11.0\; \rm m \cdot s^{-2}.

6 0
3 years ago
A ball is launched vertically with an initial speed of y˙0= 50 m/s, and its acceleration is governed by y¨=-g-cDy˙2, where the a
stira [4]

Answer:

Explanation:

Given

acceleration is given by

a=-g-c_Dv^2

where \ddot{y}=a

\dot{y}=v

Also acceleration is given by

a=v\frac{\mathrm{d} v}{\mathrm{d} s}

ds=\frac{v}{a}dv

\int ds=\int \frac{v}{-g-0.001v^2}dv

\Rightarrow Let -g-0.001v^2=t

-0.001\times 2vdv=dt

vdv=-\frac{dt}{0.002}

at\ v_0=50\ m/s,\ t=-g-0.001(50)^2

t=-g-2.5

at v=0,\ t=-g

\int_{0}^{s}ds=\int_{-g}^{-g-2.5}\frac{-dt}{0.002t}

\int_{0}^{s}ds=\int^{-g}_{-g-2.5}\frac{dt}{0.002t}

s=\frac{1}{0.002}lnt|_{-g}^{-g-2.5}

s=\frac{1}{0.002}\ln (\frac{g+2.5}{g})

s=113.608\ m

when air drag is neglected maximum height reached is

h=\frac{v_0^2}{2g}

h=\frac{50^2}{2\times 9.8}

h=127.55\ m

3 0
3 years ago
What is the kinetic energy of a 0.5 kg puppy that is running 1.5m/s
bija089 [108]

Answer: Well the answer is KE = 5.625E-7 i just don't know the units for it...

Hope this helps....... Stay safe and have a Merry Christmas!!!!!!!!!! :D

3 0
3 years ago
Aliens? do you believe?<br><br>To get the points go into detail :)
zzz [600]

Answer:

Yes

Explanation:

There are so many planets out there that there must be habitable planets if not in our galaxy but the Universe.

Although the chances of advanced life are slim, small primitive life like microbes or sea life may still exist.

7 0
3 years ago
Read 2 more answers
Other questions:
  • A material that provides resistance to the flow of electric current is called a(an)
    13·2 answers
  • A jet leaves a runway whose bearing is N 3232degrees°E from the control tower. After flying 77 ​miles, the jet turns 90degrees°
    12·1 answer
  • In which state of matter do the particles have the most energy?
    7·2 answers
  • Microwaves and infrared waves are similar because they both have
    11·2 answers
  • A cyclist moves at 10 m / s for 5 minutes and at 18 m / s for 6 minutes in the same direction and direction. Get the average spe
    13·1 answer
  • If the length of a ramp is increased, what will happen to the input force?
    10·1 answer
  • How much work did the movers do (horizontally) pushing a 46.0-kgkg crate 10.5 mm across a rough floor without acceleration, if t
    13·1 answer
  • In your own words, describe two conditions that are necessary for an eclipse to occur.
    12·1 answer
  • Compared to yellow light, orange light has
    10·1 answer
  • Idk&gt;?????????????????
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!