Answer:
a)
a1 = log(1) = 0 (2⁰ = 1)
a2 = log(2) = 1 (2¹ = 2)
a3 = log(3) = ln(3)/ln(2) = 1.098/0.693 = 1.5849
a4 = log(4) = 2 (2² = 4)
a5 = log(5) = ln(5)/ln(2) = 1.610/0.693 = 2.322
a6 = log(6) = log(3*2) = log(3)+log(2) = 1.5849+1 = 2.5849 (here I use the property log(a*b) = log(a)+log(b)
a7 = log(7) = ln(7)/ln(2) = 1.9459/0.6932 = 2.807
a8 = log(8) = 3 (2³ = 8)
a9 = log(9) = log(3²) = 2*log(3) = 2*1.5849 = 3.1699 (I use the property log(a^k) = k*log(a) )
a10 = log(10) = log(2*5) = log(2)+log(5) = 1+ 2.322= 3.322
b) I can take the results of log n we previously computed above to calculate 2^log(n), however the idea of this exercise is to learn about the definition of log_2:
log(x) is the number L such that 2^L = x. Therefore 2^log(n) = n if we take the log in base 2. This means that
a1 = 1
a2 = 2
a3 = 3
a4 = 4
a5 = 5
a6 = 6
a7 = 7
a8 = 8
a9 = 9
a10 = 10
I hope this works for you!!
Answer:
Midpoint of AB = (0 + 2a / 2 , 0 + 0 / 2) = (2a / 2 , 0 / 2) = (a,0)
x coordinate of point c = a
N = (0 + a / 2 , 0 + b / 2) = (a / 2 , b / 2)
M = ( 2a + a / 2 , 0 + b / 2) = (3a / 2 , b / 2)
MA = √(3a / 2 - 0)² + b / 2 - 0)²
= √(3a / 2 )² + (b / 2) = 9a² / 4 + b² / 4
NB = √(a / 2 - 2a)² + (b / 2 - 0 )²
= √( a / 2 - 4a / 2)² + (b / 2 - 0)²
= √(-3a / 2)² + (b / 2)² = √9a² / 4 + b² / 4
Step-by-step explanation:
I tried my best hope its correct :0
Answer:
see explanation
Step-by-step explanation:
Parallel lines have equal slopes.
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = 5x + 1 ← is in slope- intercept form
with slope m = 5
Rearrange 2y - 10x + 3 = 0 into this form
Add 10x to both sides
2y = 10x ( subtract 3 from both sides )
2y = 10x - 3 ( divide all terms by 2 )
y = 5x -
← in slope- intercept form
with slope m = 5
Since both lines have a slope of 5 then they are parallel.
Answer:
m∠B > m∠C > m∠A
Step-by-step explanation:
The angle opposite the largest side in a triangle is the largest, and the angle opposite the shortest side is the smallest.