1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rom4ik [11]
3 years ago
13

Find the missing side of triangle

Mathematics
1 answer:
Maksim231197 [3]3 years ago
7 0

<u>Final Answer:</u>

x = 20

<u>Step-by-step explanation:</u>

we'll be using the pythagorean theorem method, in this triangle the missing letter is a.

formula: a=\sqrt{c^2-b^2}

a = x

b = 21

c = 29

a = \sqrt{29^2-21^2}

a = \sqrt{841-441}     (note: 29² = 29 × 29 = 841 and 21² = 21 × 21 = 441)

a = \sqrt{400}

a = 20

x = 20

You might be interested in
What is the area of the piece of red paper after the hole for
MakcuM [25]

Answer:

     \large\boxed{\large\boxed{47unit^2}}

Explanation:

The complete question is:

<em>A hole the size of a photograph is cut from a red piece of paper to use in a picture frame.</em>

<em />

<em>On a coordinate plane, 2 squares are shown. The photograph has points (-3, -2), (- 2, 2), (2, 1), and (1, -3). The red paper has points (- 4, 4), (4, 4), (4, -4), and (-4, -4).</em>

<em />

<em>What is the area of the piece of red paper after the hole for the photograph has been cut?</em>

<em />

<h2><em>Solution</em></h2>

<em />

The area of the piece of redpaper after the hole has been cut is equal to the area of the big square less the area of the small rectangle.

<u>1. Area of the big rectangle</u>

Vertices:

  • <em>(- 4, 4) </em>
  • <em>(4, 4)</em>
  • <em>(4, -4)</em>
  • <em>(-4, -4)</em>

<em />

The side length is the distance between two consecutive vertices:

The two points (-4,4) and (4,4) has the same y-coordinate, thus the length is just the absolute value of the difference of the x-coordinates:

  • 4-(-4)=4+4=8

The area of this square is    (8unit)^2=64unit^2

<u>2. Area of the small square</u>

Vertices:

  • <em>(-3, -2)</em>
  • <em>(- 2, 2) </em>
  • <em>(2, 1)</em>
  • <em>(1, -3)</em>

<em />

To find the side length use the distance formula for two consecutive points, for instance (2,1) and (-2,2):

      d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}\\ \\d=\sqrt{(2-(-2))^2+(2-1)^2}=\sqrt{4^2+1^2}=\sqrt{17}

The area is:

          (\sqrt{17}unit)^2}=17unit^2

<u>3. Area of the piece of red paper after the holw for the photograph has been cut:</u>

<u />

Find the difference:

<u />

         64unit^2-17unit^2=47unit^2

<em />

7 0
3 years ago
Read 2 more answers
Mr.Yatabarry’s new carpet covers 128 square feet. It’s twice as long as it is wide. What are the dimensions of the carpet?
Anvisha [2.4K]
Length: 20ft
Width: 10ft
3 0
3 years ago
Explain how to find the missing side of a right triangle when given an acute angle and one side
STatiana [176]

Answer:

ccc"ccccff

Step-by-step explanation:

me me when I fought home him then

3 0
3 years ago
Read 2 more answers
determine the volume of the rectangular prism that is 7.3 centimeters by 8.5 centimeters by 4.2 centimeters​
Drupady [299]

Answer:

hi again

Step-by-step explanation:

V=7.3×8.5×4.2=260.61 cm

hope it helps

have a nice day

7 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
sattari [20]
We know, that the <span>area of the surface generated by revolving the curve y about the x-axis is given by:

\boxed{A=2\pi\cdot\int\limits_a^by\sqrt{1+\left(y'\right)^2}\, dx}

In this case a = 0, b = 15, y=\dfrac{x^3}{15} and:

y'=\left(\dfrac{x^3}{15}\right)'=\dfrac{3x^2}{15}=\boxed{\dfrac{x^2}{5}}

So there will be:

A=2\pi\cdot\int\limits_0^{15}\dfrac{x^3}{15}\cdot\sqrt{1+\left(\dfrac{x^2}{5}\right)^2}\, dx=\dfrac{2\pi}{15}\cdot\int\limits_0^{15}x^3\cdot\sqrt{1+\dfrac{x^4}{25}}\,\, dx=\left(\star\right)\\\\-------------------------------\\\\&#10;\int x^3\cdot\sqrt{1+\dfrac{x^4}{25}}\,\,dx=\int\sqrt{1+\dfrac{x^4}{25}}\cdot x^3\,dx=\left|\begin{array}{c}t=1+\dfrac{x^4}{25}\\\\dt=\dfrac{4x^3}{25}\,dx\\\\\dfrac{25}{4}\,dt=x^3\,dx\end{array}\right|=\\\\\\

=\int\sqrt{t}\cdot\dfrac{25}{4}\,dt=\dfrac{25}{4}\int\sqrt{t}\,dt=\dfrac{25}{4}\int t^\frac{1}{2}\,dt=\dfrac{25}{4}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}= \dfrac{25}{4}\cdot\dfrac{t^{\frac{3}{2}}}{\frac{3}{2}}=\\\\\\=\dfrac{25\cdot2}{4\cdot3}\,t^\frac{3}{2}=\boxed{\dfrac{25}{6}\,\left(1+\dfrac{x^4}{25}\right)^\frac{3}{2}}\\\\-------------------------------\\\\

\left(\star\right)=\dfrac{2\pi}{15}\cdot\int\limits_0^{15}x^3\cdot\sqrt{1+\dfrac{x^4}{25}}\,\, dx=\dfrac{2\pi}{15}\cdot\dfrac{25}{6}\cdot\left[\left(1+\dfrac{x^4}{25}\right)^\frac{3}{2}\right]_0^{15}=\\\\\\=&#10;\dfrac{5\pi}{9}\left[\left(1+\dfrac{15^4}{25}\right)^\frac{3}{2}-\left(1+\dfrac{0^4}{25}\right)^\frac{3}{2}\right]=\dfrac{5\pi}{9}\left[2026^\frac{3}{2}-1^\frac{3}{2}\right]=\\\\\\=&#10;\boxed{\dfrac{5\Big(2026^\frac{3}{2}-1\Big)}{9}\pi}

Answer C.
</span>
3 0
3 years ago
Other questions:
  • Please answer 13 and 14
    11·2 answers
  • Given that y=18 + 3x² (i) find the value of y when x= -2
    8·2 answers
  • 16x6 – 81 =<br><br> I need help on this
    7·2 answers
  • The probability of getting disease X (event A) is 0.65, and the probability of getting disease Y (event B) is 0.76. The probabil
    14·2 answers
  • Why must trapezoids be congruent
    6·1 answer
  • Averages woman's brain: 1 3/10 kg (kilograms), 2 8/10 lbs (pounds), Average human heart, 3/10 kg, 7/10 lbs, What Is the total we
    10·1 answer
  • 1. 8x^2 + 10x - 9<br>2. 3x^4 - 14x^2 - 9<br>3. 4x^2 + 5x - 9<br>4. 8x^2 + 10x - 18
    11·2 answers
  • If f(x) = log(x), what is the transformation that<br> 1<br> occurs if g(x) =<br> log(x) - 1?<br> 3
    10·1 answer
  • Solve for x: 3(x + 1) = −2(x − 1) + 6. (1 point) Group of answer choices 1 4 5 25
    9·1 answer
  • 5/6 and 35/42 multiplier
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!