Answer:
a)V=18.35 m/s (South -East)
b) t =7.41 m/s
c)D= 66.70 m
Explanation:
Given that
Velocity of boat in east direction = 16 m/s
Velocity of river = 9 m/s
a)The resultant velocity V

V=18.35 m/s (South -East)
b)
We know that
Distance = Velocity x time
Lets t time takes to cross the river
136 = 18.35 x t
t =7.41 m/s
c)
The distance covered downstream
We know that
Distance = Velocity x time
t= 7.41 s
D= 7.41 x 9 m
D= 66.70 m
Answer:
<h2>The pin's final velocity is 5m/s</h2>
Explanation:
Step one:
given data
mass of ball m1=5kg
initial velocity of ball u1=10m/s
mass of pin m2=2kg
initial velocity of pin u2= 0m/s
final velocity of ball v2=8m/s
final velocity of pin v2=?
Step two:
The expression for elastic collision is given as
m1u1+m2u2=m1v1+m2v2
substituting we have
5*10+2*0=5*8+2*v2
50+0=40+2v2
50-40=2v2
10=2v2
divide both sides by 2
v2=10/2
v2=5m/s
The pin's final velocity is 5m/s
Answer:
Explanation:
Matter can be broken down into two categories: pure substances and mixtures. Pure substances are further broken down into elements and compounds. Mixtures are physically combined structures that can be separated into their original components. A chemical substance is composed of one type of atom or molecule.
Answer:
236.3 x
C
Explanation:
Given:
B(0)=1.60T and B(t)=-1.60T
No. of turns 'N' =100
cross-sectional area 'A'= 1.2 x
m²
Resistance 'R'= 1.3Ω
According to Faraday's law, the induced emf is given by,
ℰ=-NdΦ/dt
The current given by resistance and induced emf as
I = ℰ/R
I= -NdΦ/dtR
By converting the current to differential form(the time derivative of charge), we get
= -NdΦ/dtR
dq= -N dΦ/R
The change in the flux dФ =Ф(t)-Ф(0)
therefore, dq =
(Ф(0)-Ф(t))
Also, flux is equal to the magnetic field multiplied with the area of the coil
dq = NA(B(0)-B(t))/R
dq= (100)(1.2 x
)(1.6+1.6)/1.3
dq= 236.3 x
C