Answer:
<em>Hello, The velocity of the ball is 0.92 m/s in the downward direction (-0.92 m/s).</em>
Explanation:
The equation for the velocity of an object thrown upward is the following:
v = v0 + g · t
Where:
v = velocity of the ball.
v0 = initial velocity.
g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).
t = time.
To find the velocity of the ball at t = 0.40 s, we have to replace "t" by 0.40 s in the equation:
v = v0 + g · t
v = 3.0 m/s - 9.8 m/s² · 0.40 s
v = -0.92 m/s
The velocity of the ball is 0.92 m/s in the downward direction (-0.92 m/s).
<em>Hope That Helps!</em>
The two different isotopes have weights :
w1 = 78.918 amu
w2 = 80.916 amu
average weight w3 = 79.903 amu
The mixing of two components can be modeled as
let the fraction of w1 be 'x'
hence 
now this is a linear equation in 'x'. Substituting the values we get
x = 0.507
hence the percentage of Br79 = 50.7% and the percentage of BR81 = 49.3%
Answer:
0 Joules
Explanation:
The work done is given by

where,
F = Force applied
s = Displacement of the object = 0 m
= Angle between the force applied and the horizontal = 0

Work is only observed when there is a displacement.
The work done by me is 0 Joules as I was unable to move it.
Answer:
matter is the correct answer.