Answer: Mode = 12
Explanation: The mode is the most frequent value, so it is the value that shows up the most. In this case, that would be the value "12" since it shows up three times (while the other values only show up once).
Answer:
Only one parallelogram can be drawn based on the given conditions.
Step-by-step explanation: just believe me
Answer: $18
Step-by-step explanation:
Let x= Pretax price of the meal.
Given: Sales tax = 8%
Tip percent = 20%
As per given ,
Amount spent = ( Pretax price) + (Sales tax ) of (Pretax price) + (Tip percent)of (Pretax price)
= x+ 8% of x + 20% of x
= x +0.08+0.20x
= 1.28x
∵ Amount spent = $23.04
So,

Hence, the pretax price of the meal= $18.
Separate the vectors into their <em>x</em>- and <em>y</em>-components. Let <em>u</em> be the vector on the right and <em>v</em> the vector on the left, so that
<em>u</em> = 4 cos(45°) <em>x</em> + 4 sin(45°) <em>y</em>
<em>v</em> = 2 cos(135°) <em>x</em> + 2 sin(135°) <em>y</em>
where <em>x</em> and <em>y</em> denote the unit vectors in the <em>x</em> and <em>y</em> directions.
Then the sum is
<em>u</em> + <em>v</em> = (4 cos(45°) + 2 cos(135°)) <em>x</em> + (4 sin(45°) + 2 sin(135°)) <em>y</em>
and its magnitude is
||<em>u</em> + <em>v</em>|| = √((4 cos(45°) + 2 cos(135°))² + (4 sin(45°) + 2 sin(135°))²)
… = √(16 cos²(45°) + 16 cos(45°) cos(135°) + 4 cos²(135°) + 16 sin²(45°) + 16 sin(45°) sin(135°) + 4 sin²(135°))
… = √(16 (cos²(45°) + sin²(45°)) + 16 (cos(45°) cos(135°) + sin(45°) sin(135°)) + 4 (cos²(135°) + sin²(135°)))
… = √(16 + 16 cos(135° - 45°) + 4)
… = √(20 + 16 cos(90°))
… = √20 = 2√5