Answer:
20,000/334 = 59.88, so each container can hold 60 pounds of sugar
Step-by-step explanation:
Answer: just want points tbh
Step-by-step explanation:
Answer:
Weighted average is the average of a set of numbers, each with different associated “weights” or values. To find a weighted average, multiply each number by its weight, then add the results.
Step-by-step explanation:
To solve this problem you must apply the proccedure shown below:
1. You have the following expression given in the problem above:
![\sqrt[3]{216 x^{27} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B216%20x%5E%7B27%7D%20%7D%20)
2. Rewriting the expression we have:
![\sqrt[3]{6^3 x^{27} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B6%5E3%20x%5E%7B27%7D%20%7D%20)
3. You have that

and the exponent

are divisible by index

. Therefore, you have:
![\sqrt[3]{216 x^{27} } =6 x^{9}](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7B216%20x%5E%7B27%7D%20%7D%20%3D6%20x%5E%7B9%7D%20)
Therefore, as you can see,
the answer is the option, which is:
Overall dimensions of the page in order to maximize the printing area is page should be 11 inches wide and 10 inches long .
<u>Step-by-step explanation:</u>
We have , A page should have perimeter of 42 inches. The printing area within the page would be determined by top and bottom margins of 1 inch from each side, and the left and right margins of 1.5 inches from each side. let's assume width of the page be x inches and its length be y inches So,
Perimeter = 42 inches
⇒ 
width of printed area = x-3 & length of printed area = y-2:
area = 

Let's find
:
=
, for area to be maximum
= 0
⇒ 
And ,

∴ Overall dimensions of the page in order to maximize the printing area is page should be 11 inches wide and 10 inches long .