Answer:
i think it's weakest
EDIT: It's net. I answered weakest but it was wrong and the correct answer was net. oops
Explanation:
if a strong force is acting on something it will push it away, meaning the object would go towards the weaker force
 
        
                    
             
        
        
        
Answer:
 F = 4.47 10⁻⁶ N
Explanation:
The expression they give for the strength of the tide is
       F = 2 G m M a / r³
Where G has a value of 6.67 10⁻¹¹ N m² / kg² and M which is the mass of the Earth is worth 5.98 10²⁴ kg
They ask us to perform the calculation
       F = 2 6.67 10⁻¹¹ 135  5.98 10²⁴ 13 / (6.79 10⁶)³
       F = 4.47 10⁻⁶ N
This force is directed in the single line at the astronaut's mass centers and the space station
 
        
             
        
        
        
Answer:
Here is the solution hope it helps:)
 
        
             
        
        
        
Answer:
 at t=46/22, x=24 699/1210 ≈ 24.56m
Explanation:
The general equation for location is:
x(t) = x₀ + v₀·t + 1/2 a·t²
Where:
x(t) is the location at time t. Let's say this is the height above the base of the cliff.
x₀ is the starting position. At the base of the cliff we'll take x₀=0 and at the top x₀=46.0
v₀ is the initial velocity. For the ball it is 0, for the stone it is 22.0.
a is the standard gravity. In this example it is pointed downwards at -9.8 m/s².
Now that we have this formula, we have to write it two times, once for the ball and once for the stone, and then figure out for which t they are equal, which is the point of collision.
Ball: x(t) = 46.0 + 0 - 1/2*9.8 t²
Stone: x(t) = 0 + 22·t - 1/2*9.8 t²
Since both objects are subject to the same gravity, the 1/2 a·t² term cancels out on both side, and what we're left with is actually quite a simple equation:
46 = 22·t 
so t = 46/22 ≈ 2.09
Put this t back into either original (i.e., with the quadratic term) equation and get:
x(46/22) = 46 - 1/2 * 9.806 * (46/22)² ≈ 24.56 m
 
        
             
        
        
        
Answer:
A. Final pressure P2 
P2/P1 = (T2/T1)^n/n-1
P1 = 4bar
T1 = 438K
T2 = 300K
Polytropic index, n, = 1.3
P2 = 4 (300/438)^1.3/1.3-1
P2 = 4 (300/438)^4.333
P2 = 4 * 0.19400
P2 = 0.776bar.
B. The work done is; 
W = mR/ n-1 (T1 -T2) 
Where, R = 0.1889kJ/kg.K, m = 1
W = 1 * 0.1889/ 1.3-1 * (438-300)
W = 86.89kJ/kg.
C. The heat transfer, Q
Q = W + ΔU
Q = W + mCv(T2-T1), where Cv of nitrogen is 0.743kj/kgk
Q = 86.89 + 1 * 0.743 (300-438)
Q = 86.89 + (-102.534)
Q = -15.644kJ/K
Q = 15.64kJ/K