Answer: Potassium iodide
Explanation: their you go
Answer:
Part 1) Time of travel equals 61 seconds
Part 2) Maximum speed equals 39.66 m/s.
Explanation:
The final speed of the train when it completes half of it's journey is given by third equation of kinematics as

where
'v' is the final speed
'u' is initial speed
'a' is acceleration of the body
's' is the distance covered
Applying the given values we get

Now the time taken to attain the above velocity can be calculated by the first equation of kinematics as

Since the deceleration is same as acceleration hence the time to stop in the same distance shall be equal to the time taken to accelerate the first half of distance
Thus total time of journey equals
Part b)
the maximum speed is reached at the point when the train ends it's acceleration thus the maximum speed reached by the train equals 
The answer would be A) TRUE because we as humans can be dehydrated easily just by working out in sun or working out in the cold winter, that's how our body burns fat and calories, but it also burns our eyes since sweat has salt in it, and dehydrated means to run out of water for us, like not enough water, but yes to the answer its T.
An arachnid has eight legs.
Answer:
Strong nuclear force is 1-2 order of magnitude larger than the electrostatic force
Explanation:
There are mainly two forces acting between protons and neutrons in the nucleus:
- The electrostatic force, which is the force exerted between charged particles (therefore, it is exerted between protons only, since neutrons are not charged). The magnitude of the force is given by

where k is the Coulomb's constant, q1 and q2 are the charges of the two particles, r is the separation between the particles.
The force is attractive for two opposite charges and repulsive for two same charges: therefore, the electrostatic force between two protons is repulsive.
- The strong nuclear force, which is the force exerted between nucleons. At short distance (such as in the nucleus), it is attractive, therefore neutrons and protons attract each other and this contributes in keeping the whole nucleus together.
At the scale involved in the nucleus, the strong nuclear force (attractive) is 1-2 order of magnitude larger than the electrostatic force (repulsive), therefore the nucleus stays together and does not break apart.