Similarities:
-- All three classes have a fulcrum (pivot).
-- All three classes have a point where the effort force is applied.
-- All three classes have a point where the load or resistance force is applied.
-- If you can find a place to stand and a lever that's long enough,
then you can move the Earth with a 1st or 2nd Class lever.
Differences:
-- The mechanical advantage of a 1st Class lever
can be greater than 1, equal to 1, or less than 1.
-- The mechanical advantage of a 2nd Class lever is always more than 1 .
-- The mechanical advantage of a 3rd Class lever is always less than 1 .
<span>Matter of all types have gravity, which causes it to attract to each other. The most efficient way for all this matter to congregate is the sphere. As they consolidate, they form the shape. As they compress, temperatures in the center of the mass start to go up and if it hits the proper point, it can ignite and become a star.</span>
So this is dealing with the conservation of energy. So you set kinetic energy equal to potential energy, so it looks like this:
1/2mv^2=mgh. The m's cancel out, so it is 1/2v^2=gh.
To find out what the height h is, divide g on both sides, so...
h=0.5v^2/g. v=22m/s, g=9.81m/s^2, so h=(0.5)(22^2)/(9.81)=24.67m
As the roller coaster speeds up on the way down the hill, the potential energy of roller coaster will be converted to kinetic energy.
<h3>
What is Conservation of Energy ?</h3>
Conservation of energy state that energy is neither created nor destroy, they can only be transformed from one form to another. Energy of and object can transform from Potential energy to kinetic energy and vice versa
Given that at the top of a hill a roller coaster has gravitational potential energy due to its position. What will happen to this potential energy as the roller coaster speeds up on the way down the hill is that the potential energy to the roller coaster will start decreasing while the kinetic energy will start to increase.
The total energy of the roller coaster will be constant because of conservation of energy. As the roller coaster speeds up on the way down the hill, the potential energy will eventually reduce to zero where the total energy of the as the roller coaster will be equal to maximum kinetic energy.
Therefore, as the roller coaster speeds up on the way down the hill, the potential energy of roller coaster will be converted to kinetic energy.
Learn more about Energy here: brainly.com/question/25959744
#SPJ1
Answer:
Distance =60m, Time = 6s, Speed = ?
Speed = distance/time
= 60/6
=10m/s
Explanation:
Hope that this is helpful.
Have a nice day.