Answer:
3.5 square cm
Step-by-step explanation:
![Area \: of \: both \: squares \\ = {2}^{2} + {3}^{2} \\ = 4 + 9 \\ = 13 \: {cm}^{2} \\ \\ Area \: of \: both \: right \: \triangle s \\ = \frac{1}{2} \times (2 + 3) \times 2 + \frac{1}{2} \times3 \times 3 \\ = 5 \times 1+ 1.5 \times 3 \\ = 5 + 4.5 \\ = 9.5 \: {cm}^{2} \\ \\ Area \: of \:shaded \: region \\ = Area \: of \: both \: squares\\ - Area \: of \: both \: right \: \triangle s \\ = 13 - 9.5 \\ \purple { \boxed{ \bold{Area \: of \:shaded \: region = 3.5 \: {cm}^{2} }}}](https://tex.z-dn.net/?f=Area%20%5C%3A%20of%20%5C%3A%20both%20%5C%3A%20squares%20%20%5C%5C%20%3D%20%20%7B2%7D%5E%7B2%7D%20%20%2B%20%20%7B3%7D%5E%7B2%7D%20%20%5C%5C%20%20%3D%204%20%2B%209%20%5C%5C%20%20%3D%2013%20%5C%3A%20%20%7Bcm%7D%5E%7B2%7D%20%20%5C%5C%20%20%5C%5C%20Area%20%5C%3A%20of%20%5C%3A%20both%20%5C%3A%20right%20%5C%3A%20%20%5Ctriangle%20s%20%5C%5C%20%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5Ctimes%20%282%20%2B%203%29%20%5Ctimes%202%20%2B%20%5Cfrac%7B1%7D%7B2%7D%20%20%5Ctimes3%20%5Ctimes%203%20%5C%5C%20%20%3D%205%20%5Ctimes%201%2B%201.5%20%5Ctimes%203%20%5C%5C%20%20%3D%205%20%2B%204.5%20%5C%5C%20%20%3D%209.5%20%5C%3A%20%20%7Bcm%7D%5E%7B2%7D%20%20%5C%5C%20%20%5C%5C%20Area%20%5C%3A%20of%20%5C%3Ashaded%20%5C%3A%20region%20%5C%5C%20%20%3D%20Area%20%5C%3A%20of%20%5C%3A%20both%20%5C%3A%20squares%5C%5C%20-%20Area%20%5C%3A%20of%20%5C%3A%20both%20%5C%3A%20right%20%5C%3A%20%20%5Ctriangle%20s%20%5C%5C%20%20%3D%2013%20-%209.5%20%5C%5C%20%20%20%5Cpurple%20%7B%20%5Cboxed%7B%20%5Cbold%7BArea%20%5C%3A%20of%20%5C%3Ashaded%20%5C%3A%20region%20%3D%203.5%20%5C%3A%20%20%7Bcm%7D%5E%7B2%7D%20%7D%7D%7D)
There is no rectangle shown.
To find area, you multiply the rectangle’s length by its width. If it comes out to be a decimal and you need to round it by the nearest tenth, then you round it to the right of the decimal point.
Ex: 2.34 -> 2.3
Then, to find how much square inches are equal to square ft, you divide the square inches by 12, I believe.
Answer:
5
Step-by-step explanation:
given that x and y are proportional, they can be expressed as y = rx, where r is the proportionality constant. Thus, we can solve for r by doing y/x in any given point.
![\frac{8}{1.6} = \frac{15}{3} = \frac{22}{4.4} = 5](https://tex.z-dn.net/?f=%5Cfrac%7B8%7D%7B1.6%7D%20%3D%20%5Cfrac%7B15%7D%7B3%7D%20%20%3D%20%5Cfrac%7B22%7D%7B4.4%7D%20%3D%205)
A triangular Prism I would say but it does have rectangles