1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Helen [10]
3 years ago
12

if a torque of 55.0 N/m is required and the largest force that can be exerted by you is 135 N what is th e length of the lever a

rm that must be used?
Physics
1 answer:
Whitepunk [10]3 years ago
7 0

Answer:

r=0.41m

Explanation:

Torque is defined as the cross product between the position vector ( the lever arm vector connecting the origin to the point of force application) and the force vector.

\tau=r\times F

Due to the definition of cross product, the magnitude of the torque is given by:

\tau=rFsin\theta

Where \theta is the angle between the force and lever arm vectors. So, the length of the lever arm (r) is minimun when sin\theta is equal to one, solving for r:

r=\frac{\tau}{F}\\r=\frac{55\frac{N}{m}}{135N}\\r=0.41m

You might be interested in
24 A uniform electric field of magnitude 1.1×104 N/C is perpendicular to a square sheet with sides 2.0 m long. What is the elect
Tatiana [17]

Answer:

44,000 Nm^2/C

Explanation:

The electric flux through a certain surface is given by (for a uniform field):

\Phi = EA cos \theta

where:

E is the magnitude of the electric field

A is the area of the surface

\theta is the angle between the direction of the field and of the normal to the surface

In this problem, we have:

E=1.1\cdot 10^4 N/C is the electric field

L = 2.0 m is the side of the sheet, so the area is

A=L^2=(2.0)^2=4.0 m^2

\theta=0^{\circ}, since the electric field is perpendicular to the surface

Therefore, the electric flux is

\Phi =(1.1\cdot 10^4)(4.0)(cos 0^{\circ})=44,000 Nm^2/C

4 0
3 years ago
A rock dropped on the moon will increase it's speed from 0 m/s to 8.15 m/s in about 5 seconds what is the acceleration of the ro
Lunna [17]

Using the formula:


a = (Vf - Vi) / t


Our initial velocity is 0 m/s, and our final velocity is 8.15 m/s, with a time period of 5 seconds:


a = (8.15 - 0.0) / 5

a = 1.63 m/s^2


If you know the acceleration due to gravity on the Moon, you can confirm this answer. The recorded gravitational acceleration on the Moon is 1.62 m/s^2.

5 0
3 years ago
If we were to illuminate them only with light from the Balmer transition considered above, would the solar panels produce a curr
Ugo [173]

Answer:

No

Explanation:

The reason why no current is produced are basically that, the wavelengths of light in the Balmer transition are reflected, not absorbed in solar panels, hence no current is produced.

The Balmer series consists of lines in the visible spectrum. It corresponds to emission of a photon of light when electrons descend from higher energy levels to the n=2 level in the hydrogen spectrum. The various wavelengths in the Balmer series can be separated by a prism since they are all in the visible region of the electromagnetic spectrum.

In solar panels, light corresponding to the wavelengths in the Balmer series is merely reflected by the panel and not absorbed. Since light is not absorbed, no current can be produced when the panel is irradiated with light corresponding to the wavelengths in the Balmer series.

6 0
3 years ago
Suppose the original segment of wire is stretched to 10 times its original length. How much charge must be added to the wire to
Debora [2.8K]

Here we want to study how the linear charge density changes as we change the measures of our body.

We will find that we need to add 9*Q of charge to keep the linear charge density unchanged.

<em>I will take two assumptions:</em>

The charge is homogeneous, so the density is constant all along the wire.

As we work with a linear charge density we work in one dimension, so the wire "has no radius"

Originally, the wire has a charge Q and a length L.

The linear charge density will be given by:

λ = Q/L

Now the length of the wire is stretched to 10 times the original length, so we have:

L' = 10*L

We want to find the value of Q' such that λ' (the <u>linear density of the stretched wire</u>) is still equal to λ.

Then we will have:

λ' = Q'/L' = Q'/(10*L) = λ = Q/L

Q'/(10*L) = Q/L

Q'/10 = Q

Q' = 10*Q

So the new <u>charge must be 10 times the original charge</u>, this means that we need to add 9*Q of charge to keep the linear charge density unchanged.

If you want to learn more, you can read:

brainly.com/question/14514975

6 0
3 years ago
A child has a mass of 35 kg. The child is running across a fiend and has a speed of 3 m/s. What is the kinetic energy of the chi
Sladkaya [172]

Answer:

Explanation:

Given the following data;

Mass = 35 kg

Velocity = 3 m/s

To find the kinetic energy of the child;

K.E = ½mv²

4 0
3 years ago
Other questions:
  • A more realistic car would cause the wheels to spin in a manner that would result in the ground pushing it forward with a consta
    10·1 answer
  • A river is flowing south at a rate of 3 m/s. Steven can roe directly across the river if he aims the raft 30 degrees. What rate
    14·1 answer
  • PHYSICS PLEASE HELP!
    8·1 answer
  • A baseball with a mass of 142 grams is thrown across a field. It accelerates at a rate of 8 m/s^2. What is the force acting on t
    13·1 answer
  • Which of the following statements best contrasts thermal energy transfer through radiation, conduction, and convection
    8·1 answer
  • One of the reasons it is important to keep our water supplies pollution free is potability. Water that is potable is
    8·2 answers
  • Got it never mind. The only reason I'm typing more is to fill out the required space
    8·1 answer
  • Which of the following are in the correct order from smallest to largest?
    9·1 answer
  • a physics student throws a stone horizontally off a cliff. one second later, he throws a second identical stone in exactly the s
    5·1 answer
  • What is the acceleration of a 100 kg object pushed by Beau with a force of 500 N? Write out your equation.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!