The work done by a constant force in a rectilinear motion is given by:

where F is the magnitude of the force, d is the distance and θ is the angle between the force and the displacement vector.
In this case we have two forces then we need to add the work done by each of them; for the first force we have a magnitude of 17 N, a displacement of 12 m and and angle of 0° (since both the displacement and the force point right); for the second force we have a magnitude of 36 N, a displacement of 12 m and an angle of 30°. Plugging these values we have that the total work is:

Therefore, the total work done is 578.123 J and the answer is option E
Answer:
Wavelength = 736.67 nm
Explanation:
Given
Energy of the photon = 2.70 × 10⁻¹⁹ J
Considering:
where, h is Plank's constant having value as 6.63 x 10⁻³⁴ J.s
The relation between frequency and wavelength is shown below as:
c = frequency × Wavelength
Where, c is the speed of light having value = 3×10⁸ m/s
So, Frequency is:
Frequency = c / Wavelength
So, Formula for energy:
Energy = 2.70 × 10⁻¹⁹ J
c = 3×10⁸ m/s
h = 6.63 x 10⁻³⁴ J.s
Thus, applying in the formula:
Wavelength = 736.67 × 10⁻⁹ m
1 nm = 10⁻⁹ m
So,
<u>Wavelength = 736.67 nm</u>
Answer:
B, C and E
Explanation:
The unit of resistance in the international system is the Ohm, the equation that describes the resistance is:

Where (l) is for lenght of the wire, (S) is the area and (p) its the constant associated to the conductor.
It's related by the Ohm's Law:

The water molecules with a slower speed are escaping
Based on the situation above the the work done was 400 Joules. <span>Q = FS cos(theta) is the so-called work function. It's important to learn the work physics; you'll see it over and over in science/physics class. Theta is the angle between the force vector F and the distance vector S. In your problem we assume theta = 0, the two vectors were assumed aligned.</span>