<u>Answer:</u>

<u>Step-by-step explanation:</u>
Given dimensions of the box = 20cm × 6cm × 4cm .
Dimension of the cube = 2cm × 2cm × 2cm .
Therefore the number of cubes that can be fitted into the box will be equal to the Volume of box divided by the Volume of the cube. So ,


<h3>
<u>Hence</u><u> the</u><u> </u><u>number</u><u> </u><u>of</u><u> </u><u>cubes</u><u> </u><u>that</u><u> </u><u>can</u><u> </u><u>be</u><u> </u><u>fitted</u><u> </u><u>in</u><u> the</u><u> </u><u>box </u><u>is</u><u> </u><u>6</u><u>0</u><u> </u><u>.</u></h3>
Answer:
The perimeter of the triangle is 30 cm.
The perimeter of the rectangle is also 30 cm.
Step-by-step explanation:
The perimeter of the triangle is 30 cm.
The perimeter of the rectangle is also 30 cm.
By AAS congruency the two triangles are congruent
<span>The answer is B. C(n) = 0.75n - 0.25.
Let n be the number of pieces. The price for 1 piece is $0.75. The price C for n pieces without a coupon is n * $0.75: C(n) = 0.75n. The coupon value is $0.25. So, this value must be subtracted from the total price of n pieces. Since the coupon values in independent on the number of pieces, the price C for n pieces with the coupon will be: C(n) = 0.75n - 0.25. Therefore, the correct choice is B.</span>
Its B don't thx me
I hope I help