Answer:
help with what? what is your q u e s t i o n
Step-by-step explanation:
Answer:
x=3
Step-by-step explanation:
<em>3</em><em>x</em><em>-</em><em>4</em><em>=</em><em>8</em><em>-</em><em>x</em><em>(</em><em>Group</em><em> </em><em>like</em><em> </em><em>terms</em><em>)</em>
<em>3</em><em>x</em><em>+</em><em>x</em><em>=</em><em>8</em><em>+</em><em>4</em><em>(</em><em>Add</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>
<em>4</em><em>x</em><em>=</em><em>1</em><em>2</em><em>(</em><em>After</em><em> </em><em>adding</em><em> </em><em>you</em><em> </em><em>will</em><em> </em><em>proceed </em><em>to</em><em> </em><em>divide</em><em> </em><em>both</em><em> </em><em>sides</em><em> </em><em>by</em><em> </em><em>4</em><em>)</em>
<em>x</em><em>=</em><em>3</em><em>(</em><em>x</em><em> </em><em>is</em><em> </em><em>3</em><em> </em><em>because</em><em> </em><em>4</em><em> </em><em>can</em><em> </em><em>divide</em><em> </em><em>1</em><em>2</em><em> </em><em>3</em><em> </em><em>times</em><em> </em><em>that's</em><em> </em><em>why</em><em> </em><em>we</em><em> </em><em>have</em><em> </em><em>x</em><em> </em><em>as</em><em> </em><em>equal</em><em> </em><em>to</em><em> </em><em>3</em><em>)</em>
Answer:
6 times 10^3
Step-by-step explanation:
You multiply 3 and 2 together and 10^7 and 10^-4 together. 3x2 is equal to 6 and 10^7 times 10^-4 is the same as 10^7-4 which is equal to 10^3. Therefore, the answer is 6 times 10^3.
If this has helped please mark as brainliest
Hi there!
»»————- ★ ————-««
I believe your answer is:
4
»»————- ★ ————-««
Here’s why:
⸻⸻⸻⸻
- I am assuming that the fraction is supposed to be the exponent.
⸻⸻⸻⸻
⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
Answer:
True. See explanation below
Step-by-step explanation:
Previous concepts
Analysis of variance (ANOVA) "is used to analyze the differences among group means in a sample".
The sum of squares "is the sum of the square of variation, where variation is defined as the spread between each individual value and the grand mean"
If we assume that we have groups and on each group from we have individuals on each group we can define the following formulas of variation:
And we have this property
The degrees of freedom for the numerator on this case is given by where k represent the number of groups.
The degrees of freedom for the denominator on this case is given by .
And the total degrees of freedom would be
And the we can find the F statistic