Answer:
Step-by-step explanation:
According to the question,A triangular city lot bounded by three streets has a length of 300 feet on one street, 250 feet on the second, and 420 feet on the third, thus
Let the angles be A, B, and C and the sides a, b, c.
a=300, b=250 and c=420
Then, ![cosC=\frac{a^2+b^2-c^2}{2ab}](https://tex.z-dn.net/?f=cosC%3D%5Cfrac%7Ba%5E2%2Bb%5E2-c%5E2%7D%7B2ab%7D)
![cosA=\frac{b^2+c^2-a^2}{2bc}](https://tex.z-dn.net/?f=cosA%3D%5Cfrac%7Bb%5E2%2Bc%5E2-a%5E2%7D%7B2bc%7D)
and ![cosB=\frac{a^2+c^2-b^2}{2ac}](https://tex.z-dn.net/?f=cosB%3D%5Cfrac%7Ba%5E2%2Bc%5E2-b%5E2%7D%7B2ac%7D)
For finding angle C, we have
![cosC=\frac{300^2+250^2-420^2}{2(300)(25)}](https://tex.z-dn.net/?f=cosC%3D%5Cfrac%7B300%5E2%2B250%5E2-420%5E2%7D%7B2%28300%29%2825%29%7D)
![cosC=\frac{90,000+62,500-176,400}{150,000}](https://tex.z-dn.net/?f=cosC%3D%5Cfrac%7B90%2C000%2B62%2C500-176%2C400%7D%7B150%2C000%7D)
![CosC=\frac{-23,900}{150,000}](https://tex.z-dn.net/?f=CosC%3D%5Cfrac%7B-23%2C900%7D%7B150%2C000%7D)
![C=cos^{-1}(0.159)](https://tex.z-dn.net/?f=C%3Dcos%5E%7B-1%7D%280.159%29)
(angle C is in quadrant II)
For finding angle A, we have
![CosA=\frac{250^2+420^2-300^2}{2(250)(420)}](https://tex.z-dn.net/?f=CosA%3D%5Cfrac%7B250%5E2%2B420%5E2-300%5E2%7D%7B2%28250%29%28420%29%7D)
![CosA=\frac{62,500+176,400-90,000}{210,000}](https://tex.z-dn.net/?f=CosA%3D%5Cfrac%7B62%2C500%2B176%2C400-90%2C000%7D%7B210%2C000%7D)
![CosA=-0.71](https://tex.z-dn.net/?f=CosA%3D-0.71)
![A=cos^{-1}(0.71)](https://tex.z-dn.net/?f=A%3Dcos%5E%7B-1%7D%280.71%29)
![A=44.765^{\circ}](https://tex.z-dn.net/?f=A%3D44.765%5E%7B%5Ccirc%7D)
For finding angle B, we follow the same procedure, thus
![B=180-(80.85+44.765)= 54.385^{\circ}](https://tex.z-dn.net/?f=B%3D180-%2880.85%2B44.765%29%3D%2054.385%5E%7B%5Ccirc%7D)
Now, the largest angle is made by angle C, thus third street has the largest angle.