Answer:4
Step-by-step explanation:
log₂[log₂(√4x)] = 1
log₂2 =1
So we replace our 1 with log₂2
log₂[log₂(√4x)] = log₂2
log₂ on bothside will cancel each other.
We will be left with;
[log₂(√4x)] = 2
log = power of exponential
√4x = 2²
√4x = 4
Square bothside
(√4x)² = 4²
4X = 16
Divide bothside by 4
4x/4 = 16/4
x = 4
The second graph, B is the answer
Answer:
The function has a negative leading coefficient and a maximum vertex point
Explanation:
This function's leading coefficient is determined by whether it is concave up or concave down, meaning it has an Up and Up end behavior for a positive leading coefficient and a Down and Down end behavior for a negative coefficient.
This function's end behavior is Down and Down, so it must have a negative leading coefficient.
The function has a minimum vertex when the function has a positive leading coefficient and a maximum vertex point when the function has a negative leading coefficient.
This means that the functions vertex is the highest or lowest possible value of the function (the rest of the function continues forever in whichever direction.
This particular function has a maximum vertex as there is no point above the vertex here and the function has a negative leading coefficient.
Answer:
x>3
Step-by-step explanation:
8x-6>12+2x
Subtract 2x from both sides:
6x-6>12
Add 6 to both sides:
6x>18
Divide both sides by 6:
x>3
Hope this helps!
1
Simplify \frac{1}{2}\imath n(x+3)21ın(x+3) to \frac{\imath n(x+3)}{2}2ın(x+3)
\frac{\imath n(x+3)}{2}-\imath nx=02ın(x+3)−ınx=0
2
Add \imath nxınx to both sides
\frac{\imath n(x+3)}{2}=\imath nx2ın(x+3)=ınx
3
Multiply both sides by 22
\imath n(x+3)=\imath nx\times 2ın(x+3)=ınx×2
4
Regroup terms
\imath n(x+3)=nx\times 2\imathın(x+3)=nx×2ı
5
Cancel \imathı on both sides
n(x+3)=nx\times 2n(x+3)=nx×2
6
Divide both sides by nn
x+3=\frac{nx\times 2}{n}x+3=nnx×2
7
Subtract 33 from both sides
x=\frac{nx\times 2}{n}-3x=nnx×2−3