Answer:
A. Gamma decay
Explanation:
A form of nuclear decay in which the atomic number is unchanged is a gamma decay.
The atom has undergone a gamma decay.
In a gamma decay, no changes occur to the mass and atomic number of the substance.
- Gamma rays have zero atomic and mass numbers.
- When they cause decay, they cause no change to the mass and atomic numbers.
- They simply produce gamma rays during such reactions and these rays are very energetic.
Answer:
A
Explanation:
this because
gravitational potential energy = mass x height x gravitational field strength
so let's assume mass is 2 kg and gravitational field strength is 10 N /kg
so when height is very low, take it as 3 m
gravitational potential energy= 2 x 3 x 10 = 60 j
but when height is 6m
gravitational potential energy = 2 x 6 x 10 = 120 j
so when the height is the greatest, the gravitational potential energy is the highest
so A is the heighest so it has the highest gravitational potential energy.
hope this helps
please mark it brainliest :D
If the kinetic energy of each ball is equal to that of the other,
then
(1/2) (mass of ppb) (speed of ppb)² = (1/2) (mass of gb) (speed of gb)²
Multiply each side by 2:
(mass of ppb) (speed of ppb)² = (mass of gb) (speed of gb)²
Divide each side by (mass of gb) and by (speed of ppb)² :
(mass of ppb)/(mass of gb) = (speed of gb)²/(speed of ppb)²
Take square root of each side:
√ (ratio of their masses) = ( 1 / ratio of their speeds)²
By trying to do this perfectly rigorously and elegantly, I'm also
using up a lot of space and guaranteeing that nobody will be
able to follow what I have written. Let's just come in from the
cold, and say it the clear, easy way:
If their kinetic energies are equal, then the product of each
mass and its speed² must be the same number.
If one ball has less mass than the other one, then the speed²
of the lighter one must be greater than the speed² of the heavier
one, in order to keep the products equal.
The pingpong ball is moving faster than the golf ball.
The directions of their motions are irrelevant.
When both particles, the electron and the proton move at the same speed, they may have differences with their de Broglie wavelength, the particle that would have a longer wavelength would be the proton since the wavelength is in direct proportionality with the mass of the particle.