Answer:

Explanation:
The Coulomb's law states that the magnitude of the electrostatic force between two charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them:

In this case, we have
:

The answer is to your question is c
Vi = 2m/s
a= 4.5 m/s
d= 340 m
vf= ?
use this equation ... vf^2=vi<span>^2+2ad
you should get vf = 55.3
hope this helps </span>
Answer:
v = 2.45 m/s
Explanation:
first we find the time taken during this motion by considering the vertical motion only and applying second equation of motion:
h = Vi t + (1/2)gt²
where,
h = height of cliff = 15 m
Vi = Initial Vertical Velocity = 0 m/s
t = time taken = ?
g = 9.8 m/s²
Therefore,
15 m = (0 m/s) t + (1/2)(9.8 m/s²)t²
t² = (15 m)/(4.9 m/s²)
t = √3.06 s²
t = 1.75 s
Now, we consider the horizontal motion. Since, we neglect air friction effects. Therefore, the horizontal motion has uniform velocity. Therefore,
s = vt
where,
s = horizontal distance covered = 4.3 m
v = original horizontal velocity = ?
Therefore,
4.3 m = v(1.75 s)
v = 4.3 m/1.75 s
<u>v = 2.45 m/s</u>
The one that both benefits each other is the one I think it's mutalistic