Answer:
See explanation
Explanation:
From Newton's law; the rate of change of momentum is proportional to the impressed force. Hence;
F.t = mv- mu
F= force
t= time
m= mass
V= final velocity
u = initial velocity
since u = 0, mv= 0
F= MV/t
F= 69.8 × 5.27/0.833
F= 442 N
Impulse = Ft= 442 × 0.833= 368 Ns
The velocity of the target and arrow after collision is 6.67m/s
<u>Explanation:</u>
Given:
Mass of arrow, mₐ = 415g
Speed of arrow, vₐ = 68.5m/s
Mass of the target, mₓ = 3.3kg = 3300g
speed of the target, vₓ = -1.1m/s (Because the target moves in opposite direction
Velocity of the target and arrow after collision, vₙ = ?
Applying the conservation of momentum,
mₐvₐ + mₓvₓ = (mₐ+mₓ) vₙ
415 X 68.5 + 3300 X -1.1 = (415+3300) X vₙ
28427.5 - 3630 = 3715 X vₙ
24797.5 = 3715 X vₙ
vₙ = 6.67m/s
Therefore, the velocity of the target and arrow after collision is 6.67m/s
Answer:
The velocity & acceleration will be taken as negative when a ball is thrown upward because work is done against the gravity.
Explanation:
Answer:
q=1.4*10^{-9}C
Explanation:
Given data:
charge on ruler = -14μC
Mass of tissue is 5 g
To Know the minimum charge, equate electrostatic force to weight
we have F = W
so
putting all value in equation,

solving for q

or q=1.4*10^{-9}C