Answer:
B) -2
Step-by-step explanation:
m=(y2-y1)/(x2-x1)=(2-(-10))/(-4-2)=(2+10)/-6=12/-6=-2
question:
How many cubes with side lengths of \dfrac12 \text{ cm} 2 1 cmstart fraction, 1, divided by, 2, end fraction, start text, space, c, m, end text does it take to fill the prism?
Step-by-step explanation:
81 cubes are needed to fill the prism
Step-by-step explanation:
Volume of prism = 3 cubic units
Side lengths of cube = 1/3
Therefore the volume of the cube is,
V = a³ (a = side of the cube)
V = 1/3 × 1/3 × 1/3
= ( 1/3 )³
= 1/27 cubic units
To find the number of cubes needed to fill the prism, we need to divide the volume of cube by volume of the prism.
Number of cubes to fill the prism= Volume of prism / Volume of cube
= 3÷1/27
=3×27/1
= 81
Therefore, 81 cubes are needed to fill the prism
C(12/15) because the other 3 all equal 0.666666666666667 but 12/15 equals 0.8
Answer:
Use the distance formula to determine the distance between the two points.
Distance
=
√
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
Substitute the actual values of the points into the distance formula.
√
(
4
−
(
−
5
)
)
2
+
(
9
−
2
)
2
Simplify.
Tap for more steps...
√
130
The result can be shown in multiple forms.
Exact Form:
√
130
Decimal Form:
11.40175425
…
image of graph
([)]|√>≥
789÷<≤
456/×
#1) 4 weeks, $280
#2) (5, 38)
#3) (1, 3)
#4) Step 3
#5) (y+z=6)*-8
#6) 2x+2y=8
Explanation
#1) Setting them equal,
60x+40=50x+80
Subtract 50x from both sides:
60x+40-50x=50x+80-50x
10x+40=80
Subtract 40 from both sides:
10x+40-40=80-40
10x=40
Divide both sides by 10:
10x/10 = 40/10
x=4
Plugging this in to one of our equations,
60(4)+40=240+40=280
#2) Setting the equations equal to one another,
8x-2=9x-7
Subtract 8x from both sides:
8x-2-8x=9x-7-8x
-2=x-7
Add 7 to both sides:
-2+7=x-7+7
5=x
Plugging this in to the first equation,
8(5)-2=y
40-2=y
38=y
#3) Substituting our value from the second equation into the first one,
n-2+3n=10
Combining like terms,
4n-2=10
Add 2 to both sides:
4n-2+2=10+2
4n=12
Divide both sides by 4:
4n/4 = 12/4
n=3
Substitute this into the second equation:
m=3-2=1
#4) The mistake was made on Step 3; the 4 was left off when the equations were added.
#5) To eliminate y, we want the coefficients to be the same. To accomplish this, we will multiply the first equation by -8.
#6) In order to have infinitely many solutions, we want each coefficient as well as the constant to be a multiple of our equation. Multiplying the equation by 2, we get 2x+2y=8.