1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina CMI [18]
3 years ago
14

Which ordered pairs are solutions to the inequality 4x+y>−6?

Mathematics
2 answers:
lisov135 [29]3 years ago
4 0

Answer:

(2,0) , (4,-20) and (-1,-1)

Step-by-step explanation:

4x+y>-6

WE need to select an ordered pair that is solution to our inequality

Lets check with each option

(2,0) , plug in 2 for x  and 0 for y

4x+y>-6

4(2)+0>-6

8>-6 True

(−3, 6), plug in -3 for x  and 6 for y

4x+y>-6

4(-3)+6>-6

-6>-6 False

(4, −20) , plug in 4 for x  and -20 for y

4x+y>-6

4(4)-20>-6

-4>-6 True

(0, −9) , plug in 0 for x  and -9 for y

4x+y>-6

4(0)-9>-6

-9>-6 False

(-1, −1) , plug in -1 for x  and -1 for y

4x+y>-6

4(-1)-1>-6

-5>-6 True

Bingel [31]3 years ago
3 0
2,0 solution

-3,6no solution

4,-20 no solution

0,-9 no solution

-1,-1  solution
You might be interested in
Solve and explain please.
deff fn [24]
Are you still doing it.?
4 0
3 years ago
2.) Combine like terms and simplify the expression: 2x +<br> 5y+ 7x<br> Your answer
SashulF [63]

Answer:

9x + 5y

Step-by-step explanation:

Here, in 2x + 5y+ 7x,   the 'like terms' are 2x and 7x, and the sum of these terms is 9x.  Thus, 2x + 5y+ 7x becomes 9x + 5y.

5 0
3 years ago
The value of 4 less than the product of 0.25 and x is greater than 6.
ella [17]

Answer:

0.25x - 4 > 6

7 0
3 years ago
Help me on this please
zalisa [80]

Answer:

1. (x, y) → (x + 3, y - 2)

Vertices of the image

a) (-2, - 3)

b) (-2, 3)

c) (2, 2)

2. (x, y) → (x - 3, y + 5)

Vertices of the image

a) (-3, 2)

b) (0, 2)

c) (0, 4)

d) (2, 4)

3. (x, y) → (x + 4, y)

Vertices of the image

a) (-1, -2)

b) (1, -2)

c) (3, -2)

4. (x, y) → (x + 6, y + 1)

Vertices of the image

a) (1, -1)

b) (1, -2)

c) (2, -2)

d) (2, -4)

e) (3, -1)

f) (3, -3)

g) (4, -3)

h) (1, -4)

5. (x, y) → (x, y - 4)

Vertices of the image

a) (0, -2)

b) (0, -3)

c) (2, -2)

d) (2, -4)

6. (x, y) → (x - 1, y + 4)

Vertices of the image

a) (-5, 3)

b) (-5, -1)

c) (-3, 0)

d) (-3, -1)

Explanation:

To identify each <u><em>IMAGE</em></u> you should perform the following steps:

  • List the vertex points of the preimage (the original figure) as ordered pairs.
  • Apply the transformation rule to every point of the preimage
  • List the image of each vertex after applying each transformation, also as ordered pairs.

<u>1. (x, y) → (x + 3, y - 2)</u>

The rule means that every point of the preimage is translated three units to the right and 2 units down.

Vertices of the preimage      Vertices of the image

a) (-5,2)                                   (-5 + 3, -1 - 2) = (-2, - 3)

b) (-5, 5)                                  (-5 + 3, 5 - 2) = (-2, 3)

c) (-1, 4)                                   (-1 + 3, 4 - 2) = (2, 2)

<u>2. (x,y) → (x - 3, y + 5)</u>

The rule means that every point of the preimage is translated three units to the left and five units down.

Vertices of the preimage      Vertices of the image

a) (0, -3)                                   (0 - 3, -3 + 5) = (-3, 2)

b) (3, -3)                                   (3 - 3, -3  + 5) = (0, 2)

c) (3, -1)                                    (3 - 3, -1 + 5) = (0, 4)

d) (5, -1)                                    (5 - 3, -1 + 5) = (2, 4)

<u>3. (x, y) → (x + 4, y)</u>

The rule represents a translation 4 units to the right.

Vertices of the preimage   Vertices of the image

a) (-5, -2)                               (-5 + 4, -2) = (-1, -2)

b) (-3, -5)                               (-3 + 4, -2) = (1, -2)

c) (-1, -2)                                (-1 + 4, -2) = (3, -2)

<u>4. (x, y) → (x + 6, y + 1)</u>

Vertices of the preimage      Vertices of the image

a) (-5, -2)                                  (-5 + 6, -2 + 1) = (1, -1)

b) (-5, -3)                                  (-5 + 6, -3 + 1) = (1, -2)

c) (-4, -3)                                   (-4 + 6, -3 + 1) = (2, -2)

d) (-4, -5)                                  (-4 + 6, -5 + 1) = (2, -4)

e) (-3, -2)                                  (-3 + 6, -2 + 1) = (3, -1)

f) (-3, -4)                                   (-3 + 6, -4 + 1) = (3, -3)

g) (-2, -4)                                  (-2 + 6, -4 + 1) = (4, -3)

h) (-2, -5)                                  (-2 + 3, -5 + 1) = (1, -4)

<u>5. (x, y) → (x, y - 4)</u>

This is a translation four units down

Vertices of the preimage      Vertices of the image

a) (0, 2)                                    (0, 2 - 4) = (0, -2)

b) (0,1)                                      (0, 1 - 4) = (0, -3)

c) (2, 2)                                     (2, 2 - 4) = (2, -2)

d) (2,0)                                     (2, 0 - 4) = (2, -4)

<u>6. (x, y) → (x - 1, y + 4)</u>

This is a translation one unit to the left and four units up.

Vertices of the pre-image     Vertices of the image

a) (-4, -1)                                   (-4 - 1, -1 + 4) = (-5, 3)

b) (-4 - 5)                                  (-4 - 1, -5 + 4) = (-5, -1)

c) (-2, -4)                                  (- 2 - 1, -4 + 4) = (-3, 0)

d) (-2, -5)                                 (-2 - 1, -5 + 4) = (-3, -1)

8 0
3 years ago
In one area, the lowest angle of elevation of the sun in winter is 27.5°. Find the minimum distance x that a plant needing full
Alex73 [517]

Answer:

The minimum distance x that a plant needing full sun can be placed from a fence that is 5 feet high is 4.435 ft

Step-by-step explanation:

Here we have the lowest angle of elevation of the sun given as 27.5° and the height of the fence is 5 feet.

We will then find the position to place the plant where the suns rays can get to the base of the plant

Note that the fence is in between the sun and the plant, therefore we have

Height of fence = 5 ft.

Angle of location x from the fence = lowest angle of elevation of the sun, θ

This forms a right angled triangle with the fence as the height and the location of the plant as the base

Therefore, the length of the base is given as

Height × cos θ

= 5 ft × cos 27.5° = 4.435 ft

The plant should be placed at a location x = 4.435 ft from the fence.

8 0
3 years ago
Other questions:
  • Represent the arithmetic series using the recursive formula 94, 87, 80, 73,
    14·1 answer
  • The solution set of n2 − 14n = -45 is {<br> }.<br> (Separate the solutions with a comma)
    11·2 answers
  • 9. 1/3(x+6) =8
    10·2 answers
  • Heeeeeeelp please ;-;
    13·1 answer
  • Which is greater, (1/2)⁴² or (1/2)⁴⁵? Why?​
    11·1 answer
  • Pablo hace vestidos para niña y necesita 14 listones que midan 3/4 de metro de largo. ¿Cuántos metros de listón necesita comprar
    14·1 answer
  • Using the graph as your guide
    8·1 answer
  • A pack of candy bars has 6 bars. Each bar weighs 3.86 ounces. How much does the pack weigh?
    5·2 answers
  • HELP, i’m really struggling and having a hard time
    7·1 answer
  • HELP PLEASE
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!