Answer:
Energy production requires the setting up of a complete interconnected chain from generation of energy from the root source of the energy to the storage of the generated energy and the eventual utilization of the energy when required
Solar energy, indirectly, continues to be the main source of energy, however, the direct use of solar energy to power the systems we use in our everyday life, require the development of technologies, such as high efficiency solar cells, means of energy storage, and compatible efficient energy usage which are industrial areas that are seeing good progress but in which the current developed equipment are expensive to produce, and due to their efficiency, are undergoing further research and development
Therefore, due to the continuous increasing improvement in solar technology which can observed, the use of the produced energy through solar is evolving, and therefore, will continue to play a continuously increasing but lower role compared to other sources of energy which have been developed to satisfactory level that can drive an industry, considering the financial investment involved
Explanation:
The ball's gravitational potential energy is converted into kinetic energy as it falls toward the ground.
<h3>How can the height of a dropped ball be determined?</h3>
Y = 1/2 g t 2, where y is the height above the ground, g = 9.8 m/s2, and t = 1.3 s, is the formula for problems like these. Any freely falling body with an initial velocity of zero meters per second can use this formula. figuring out how much y is.
A ball drops from the top of a building and picks up speed as it descends. Its speed is increasing by 10 m/s every second. What we refer to as motion with constant acceleration is, for example, a ball falling due to gravity.
The ball's parabolic motion causes it to move at a speed of 26.3 m/s right before it strikes the ground, which is faster than its straight downhill motion, which has a speed of 17.1 m/s. Take note of the rising positive y direction in the above graphic.
To Learn more About potential energy, Refer:
brainly.com/question/14427111
#SPJ10
The radius of a nucleus of hydrogen is approximately

, while we can use the Borh radius as the distance of an electron from the nucleus in a hydrogen atom:

The radius of a dime is approximately

: if we assume that the radius of the nucleus is exactly this value, then we can find how far is the electron by using the proportion

from which we find

So, if the nucleus had the size of a dime, we would find the electron approximately 500 meters away.
Answer:
I think golf does not demand high level of physical fitness. A golfer just need be skillful and able to play under pressure. In terms of physical exercise i think he/she just need to do some muscle stretches.
Explanation:
Missing question:
"Determine (a) the astronaut’s orbital speed v and (b) the period of the orbit"
Solution
part a) The center of the orbit of the third astronaut is located at the center of the moon. This means that the radius of the orbit is the sum of the Moon's radius r0 and the altitude (

) of the orbit:

This is a circular motion, where the centripetal acceleration is equal to the gravitational acceleration g at this altitude. The problem says that at this altitude,

. So we can write

where

is the centripetal acceleration and v is the speed of the astronaut. Re-arranging it we can find v:

part b) The orbit has a circumference of

, and the astronaut is covering it at a speed equal to v. Therefore, the period of the orbit is

So, the period of the orbit is 2.45 hours.