IT IS EASIER TO CLIMB A SLANTED SLOPE
Answer: the earth
Explanation: ask your teacher
Answer:
Ohm's law states that I=V/R (Current=volts divided by resistance). Since we're looking for resistance, we'll rewrite it as R=V/I. Then just plug in the numbers; R=84/9, R= 9 1/3 or 28/3. The resistance of the wire is 9.33... or 9 1/3 ohm's, depending on how you wanna write it.
Hope it helped u if yes mark me BRAINLIEST!
Tysm!
I would appreciate it!
<span>3598 seconds
The orbital period of a satellite is
u=GM
p = sqrt((4*pi/u)*a^3)
Where
p = period
u = standard gravitational parameter which is GM (gravitational constant multiplied by planet mass). This is a much better figure to use than GM because we know u to a higher level of precision than we know either G or M. After all, we can calculate it from observations of satellites. To illustrate the difference, we know GM for Mars to within 7 significant figures. However, we only know G to within 4 digits.
a = semi-major axis of orbit.
Since we haven't been given u, but instead have been given the much more inferior value of M, let's calculate u from the gravitational constant and M. So
u = 6.674x10^-11 m^3/(kg s^2) * 6.485x10^23 kg = 4.3281x10^13 m^3/s^2
The semi-major axis of the orbit is the altitude of the satellite plus the radius of the planet. So
150000 m + 3.396x10^6 m = 3.546x10^6 m
Substitute the known values into the equation for the period. So
p = sqrt((4 * pi / u) * a^3)
p = sqrt((4 * 3.14159 / 4.3281x10^13 m^3/s^2) * (3.546x10^6 m)^3)
p = sqrt((12.56636 / 4.3281x10^13 m^3/s^2) * 4.458782x10^19 m^3)
p = sqrt(2.9034357x10^-13 s^2/m^3 * 4.458782x10^19 m^3)
p = sqrt(1.2945785x10^7 s^2)
p = 3598.025212 s
Rounding to 4 significant figures, gives us 3598 seconds.</span>
Answer:
Part a)
%
Part b)
%
Explanation:
As we know that total power used in the room is given as

here we have






Part a)
Since power supply is at 110 Volt so the current obtained from this supply is given as


now resistance of transmission line



now power loss in line is given as



Now percentage loss is given as


%
Part b)
now same power must have been supplied from the supply station at 110 kV, so we have


now power loss in line is given as



Now percentage loss is given as


%