1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrac [35]
3 years ago
13

If you pull a wool sweater over your head, you will often end up with a wild hairdo. Your hair is hard to comb and wants to stan

d up. Why?
Physics
1 answer:
Sergio [31]3 years ago
5 0
Becasue when you rubbed your hair while you were putting on your sweater it caused it to rub against together causing electricity thingy lol. and thats why your hair goes straigh tup.
You might be interested in
It is easier to climb up a slanted slope than a vertical slope
V125BC [204]

IT IS EASIER TO CLIMB A SLANTED SLOPE

3 0
3 years ago
Read 2 more answers
What is solar power good for?
san4es73 [151]

Answer: the earth

Explanation: ask your teacher

3 0
2 years ago
Read 2 more answers
A 1.5m wire carries a 7 A current when a potential difference of 87 V is applied. What is the resistance of the wire?
kramer

Answer:

Ohm's law states that I=V/R (Current=volts divided by resistance). Since we're looking for resistance, we'll rewrite it as R=V/I. Then just plug in the numbers; R=84/9, R= 9 1/3 or 28/3. The resistance of the wire is 9.33... or 9 1/3 ohm's, depending on how you wanna write it.

Hope it helped u if yes mark me BRAINLIEST!

Tysm!

I would appreciate it!

3 0
3 years ago
Read 2 more answers
Assume that a satellite orbits mars 150km above its surface. Given that the mass of mars is 6.485 X 10^23kg, and the radius of m
Kisachek [45]
<span>3598 seconds The orbital period of a satellite is u=GM p = sqrt((4*pi/u)*a^3) Where p = period u = standard gravitational parameter which is GM (gravitational constant multiplied by planet mass). This is a much better figure to use than GM because we know u to a higher level of precision than we know either G or M. After all, we can calculate it from observations of satellites. To illustrate the difference, we know GM for Mars to within 7 significant figures. However, we only know G to within 4 digits. a = semi-major axis of orbit. Since we haven't been given u, but instead have been given the much more inferior value of M, let's calculate u from the gravitational constant and M. So u = 6.674x10^-11 m^3/(kg s^2) * 6.485x10^23 kg = 4.3281x10^13 m^3/s^2 The semi-major axis of the orbit is the altitude of the satellite plus the radius of the planet. So 150000 m + 3.396x10^6 m = 3.546x10^6 m Substitute the known values into the equation for the period. So p = sqrt((4 * pi / u) * a^3) p = sqrt((4 * 3.14159 / 4.3281x10^13 m^3/s^2) * (3.546x10^6 m)^3) p = sqrt((12.56636 / 4.3281x10^13 m^3/s^2) * 4.458782x10^19 m^3) p = sqrt(2.9034357x10^-13 s^2/m^3 * 4.458782x10^19 m^3) p = sqrt(1.2945785x10^7 s^2) p = 3598.025212 s Rounding to 4 significant figures, gives us 3598 seconds.</span>
8 0
3 years ago
61. A physics student has a single-occupancy dorm room. The student has a small refrigerator that runs with a current of 3.00 A
Mademuasel [1]

Answer:

Part a)

percentage = 21.3%

Part b)

percentage = 2.13 \times 10^{-5}%

Explanation:

As we know that total power used in the room is given as

P = P_1 + P_2 + P_3 + P_4

here we have

P_1 = (110)(3) = 330 W

P_2 = 100 W

P_3 = 60 W

P_4 = 3 W

P = 330 + 100 + 60 + 3

P = 493 W

Part a)

Since power supply is at 110 Volt so the current obtained from this supply is given as

110\times i = 493

i = 4.48 A

now resistance of transmission line

R = \frac{\rho L}{A}

R = \frac{(2.8 \times 10^{-8})(10\times 10^3)}{\pi(4.126\times 10^{-3})^2}

R = 5.23 \ohm

now power loss in line is given as

P = i^2 R

P = (4.48)^2(5.23)

P = 105 W

Now percentage loss is given as

percentage = \frac{loss}{supply} \times 100

percentage = \frac{105}{493} \times 100

percentage = 21.3%

Part b)

now same power must have been supplied from the supply station at 110 kV, so we have

110 \times 10^3 (i ) = 493

i = 4.48\times 10^{-3} A

now power loss in line is given as

P = i^2 R

P = (4.48 \times 10^{-3})^2(5.23)

P = 1.05 \times 10^{-4} W

Now percentage loss is given as

percentage = \frac{loss}{supply} \times 100

percentage = \frac{1.05 \times 10^{-4}}{493} \times 100

percentage = 2.13 \times 10^{-5}%

6 0
3 years ago
Other questions:
  • Eclipse of the sun occurs(A).When the moon is between the sun and the earth.(B).
    12·1 answer
  • A tennis ball with a speed of 11.3 m/s is moving perpendicular to a wall. after striking the wall, the ball rebounds in the oppo
    11·1 answer
  • How is the ideal mechanical advantage of a wheel and axle calculated?
    13·2 answers
  • Mark all the hadrons.a) Proton b) Electron c)Anti-top d) Gluon e) Tau Neutrino
    6·1 answer
  • A black hole can be considered a star that has...
    8·1 answer
  • An electron that has a velocity with x component 1.6 × 10^6 m/s and y component 2.6 × 10^6 m/s moves through a uniform magnetic
    15·1 answer
  • Which best describes the energy of a sound wave as it travels through a medium?
    12·2 answers
  • When a wave hits an object,energy from the wave is both absorbed and reflected off the object
    10·1 answer
  • Two large, plastic tubs were filled with soil The soil was shaped to create a mound in each tub. The starting height of each mou
    5·1 answer
  • Ultrasonic images are obtained from the inside organs of our body. This process uses which property of sound wave?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!