90 km/h : 3.6 = 25 m/s. If you know that on earth g = 9.81 m/s^2, then all you have to do is divide the speed by g. 25/9.81 = 2.548 seconds
At least, if by 'gently rolls off a vertical cliff' means that your starting velocity equals zero.
Answer:
a) The maximum height the ball will achieve above the launch point is 0.2 m.
b) The minimum velocity with which the ball must be launched is 4.43 m/s or 0.174 in/ms.
Explanation:
a)
For the height reached, we use 3rd equation of motion:
2gh = Vf² - Vo²
Here,
Vo = 3.75 m/s
Vf = 0m/s, since ball stops at the highest point
g = -9.8 m/s² (negative sign for upward motion)
h = maximum height reached by ball
therefore, eqn becomes:
2(-9.8m/s²)(h) = (0 m/s)² - (3.75 m/s²)²
<u>h = 0.2 m</u>
b)
To find out the initial speed to reach the hoop at height of 3.5 m, we again use 3rd eqn. of motion with h= 3.5 m - 2.5m = 1 m (taking launch point as reference), and Vo as unknown:
2(-9.8m/s²)(1 m) = (0 m/s)² - (Vo)²
(Vo)² = 19.6 m²/s²
Vo = √19.6 m²/s²
<u>Vo = 4.43 m/s</u>
Vo = (4.43 m/s)(1 s/1000 ms)(39.37 in/1 m)
<u>Vo = 0.174 in/ms</u>
<u />
K.E = 1/2 mv²
100 = 1/2 (2 )(v)²
100 = both 2 cancel (v)²
Taking Square root on b/s
√100 = √v²
10 = v
Answer:
<em>Load</em>
Explanation:
<em>The load in an electric circuit is any device that converts electrical energy into another form of energy.</em>
I would say that this passage is an example of the heliocentric correct view of the world with the sun and not the earth the center of our universe and this formed a very important part of the Renaissance wherein nature was examined first hand wherever possible to arrive at a much closer approximation of the truth than in Medieval or Classical times of Aristotle when idle speculation about nature was the order of the day.