1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prisoha [69]
3 years ago
10

How many different ordered pairs satisfy both x^{2} + y^{2} = 100 and x^{2} + 2y^{2} = 108?

Mathematics
1 answer:
Dominik [7]3 years ago
5 0
\begin{cases}x^2+y^2=100\\x^2+2y^2=108\end{cases}\\\\\\
\begin{cases}x^2+y^2=100\\x^2+y^2+y^2=108\end{cases}\\\\\\100+y^2=108\\\\y^2=108-100\\\\y^2=8\qquad|\sqrt{(\ldots)}\\\\y=-\sqrt{8}\qquad\vee\qquad y=\sqrt{8}\\\\\boxed{y=-2\sqrt{2}\qquad\vee\qquad y=2\sqrt{2}}

We know that y^2=8 so:

x^2+y^2=100\\\\x^2+8=100\\\\x^2=100-8\\\\x^2=92\qquad|\sqrt{(\ldots)}\\\\
x=-\sqrt{92}\qquad\vee\qquad x=\sqrt{92}\\\\x=-\sqrt{4\cdot23}\qquad\vee\qquad x=\sqrt{4\cdot23}\\\\\boxed{x=-2\sqrt{23}\qquad\vee\qquad x=2\sqrt{23}}

As we see there are 4 such pairs:

x=-2\sqrt{23}\qquad y=-2\sqrt{2}\\\\x=2\sqrt{23}\qquad y=-2\sqrt{2}\\\\
x=-2\sqrt{23}\qquad y=2\sqrt{2}\\\\x=2\sqrt{23}\qquad y=2\sqrt{2}


You might be interested in
7. David is having his birthday party at a water park. The park charges $150 plus $10 per guest. The total cost of the party y c
serious [3.7K]

Answer:

the slope represents 10 dollars for every guest where x = guest

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
What math concepts are important in solving the problem
Elden [556K]

Answer:

it could be a formula ex- l times w = area

Step-by-step explanation:

7 0
3 years ago
A customer calculated the cost of a new jacket, c, including a 7% sales
netineya [11]
We can put it into one step by multiplying the cost by 1.07 which basically takes into account the old cost of the jacket and the tax

the expression is
original amount * decimal multiplier (1.07) = new amount
3 0
2 years ago
(10000*C)/1.05+(10000*C)/1.05^2…..(10000*C)/1.05^13=100<br> Find C?
rosijanka [135]

9514 1404 393

Answer:

  C ≈ 0.00106455765168

Step-by-step explanation:

This is the sum of 13 terms of the geometric series that has 10000C/1.05 as the first term and a common ratio of 1/1.05. The sum S is given by ...

  S = a1(1 -r^n)/(1 -r) . . . . a1 is the first term, r is the common ratio

Using the known values, we have ...

  100 = (10000C/1.05)(1 -1.05^-13)/(1 -1/1.05))

  0.01 = C(1 -1.05^-13)/0.05

  C = 0.0005/(1 -1.05^-13) ≈ 0.0005/0.469679

  C ≈ 0.00106455765168

3 0
3 years ago
An amusement park is open for 15 hours a day, 7 days a week
sertanlavr [38]

Answer:

The domains are;

0 < x < 3 for f(x) = 15

3 ≤ x ≤ 7 for f(x) = 22

7 < x ≤ 15 for f(x) = 30

Step-by-step explanation:

The duration the amusement park is opened, t = 15 hours

The number of days the amusement is opened = 7 days a week

The prices for the admission are;

x < 3 hours = $15

3 ≤ x ≤ 7 hours = $22

x > 7 hours = $30

The functions are;

f(x) = 15 when x < 3; The domain = 0 < x < 3

f(x) = 22 when 3 ≤ x ≤ 7; The domain = 3 ≤ x ≤ 7

f(x) = 30 when x > 7; The domain = 7 < x ≤ 15.

3 0
3 years ago
Other questions:
  • (1.8 * 10^2) * (5 * 10^2)
    14·1 answer
  • Find the polar coordinates of the points with cartesian coordinates (−x, y).
    14·1 answer
  • Geometry question!!
    5·1 answer
  • Solve the following eqation for x: 6(4x+5)+3=3(x+8)+3. Round to the nearest hundredth
    14·2 answers
  • A field test for a new exam was given to randomly selected seniors. The exams were graded, and the sample mean and sample standa
    10·1 answer
  • 15% of $17,500 <br><br> 9.5% of $15,000<br><br> 11% of $18,050 <br><br> 10.5% of $21,000
    6·1 answer
  • Dequan is training for a marathon. He runs 20 miles every 4 days. What is the unit rate for Dequan?
    5·2 answers
  • Showplace Lanes charges
    13·1 answer
  • PLZZZ HELP ASAP TYSM I NEED THIS ASAP
    13·1 answer
  • I like Pho shudbixbuebxubeuxbuebxube
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!