Three blocks a, b, and c and a grooved block d have dimensions a, b, c, and d as follows: a 5 1.500 6 0.001 in b 5 2.000 6 0.003
in c 5 3.000 6 0.004 in d 5 6.520 6 0.010 in d a b b c d a w c (a) determine the mean gap w and its tolerance. (b) determine the mean size of d that will assure that w $ 0.010 in.
is the sum of positive integers between (inclusive) and (inclusive) that are not multiples of and not multiples .
Step-by-step explanation:
For an arithmetic series with:
as the first term,
as the last term, and
as the common difference,
there would be terms, where as the sum would be .
Positive integers between (inclusive) and (inclusive) include:
.
The common difference of this arithmetic series is . There would be terms. The sum of these integers would thus be:
.
Similarly, positive integers between (inclusive) and (inclusive) that are multiples of include:
.
The common difference of this arithmetic series is . There would be terms. The sum of these integers would thus be:
Positive integers between (inclusive) and (inclusive) that are multiples of include:
.
The common difference of this arithmetic series is . There would be terms. The sum of these integers would thus be:
Positive integers between (inclusive) and (inclusive) that are multiples of (integers that are both multiples of and multiples of ) include:
.
The common difference of this arithmetic series is . There would be terms. The sum of these integers would thus be:
.
The requested sum will be equal to:
the sum of all integers from to ,
minus the sum of all integer multiples of between and , and the sum integer multiples of between and ,
plus the sum of all integer multiples of between and - these numbers were subtracted twice in the previous step and should be added back to the sum once.