Answer:
The correct option is;
D. 45%
Explanation:
From the Hardy- Weinberg law, we have;
p² + 2·p·q + q² = 1
p + q = 1
Where:
p = Dom inant allele frequency in the population
q = Recessive allele frequency in the population
p² = The percentage of individuals in the population that are hom ozygous dominant
q² = The percentage of individuals in the population that are homo zygous recessive
2×p×q = The percentage of hete rozyous individuals in the population
The number of individuals that express the recessive phenotype = 86
The number of individuals in the population = 200
The percentage of individuals that express the recessive phenotype, q² = 86/200 = 0.43
Therefore;
q = √0.43 = 0.656
p + q = 1
p = 1 - q = 1 - 0.656= 0.344
∴ The frequency of individuals that express the do minant phe notype, p = 0.344
The percentage of heterozyous individuals in the population = 2×p×q × 100 = 2 × 0.656 × 0.344 × 100 = 45.15% ≈ 45%
The sequence of impulse through the cardiac conduction system starts from SA node passes to AV node to atrioventricular bundle fibers and finally to Purkinje fibers.
Heart is an organ that receives oxygenated blood form lungs and deoxygenated blood from different parts of body. Oxygenated blood is transported to different organs and deoxygenated blood is transported to lungs for oxygenation.
Now, to perform this transportation, the auricles and ventricles of heart contract and relax. In order to contract and relax, impulse generation is required, which begins at SA node or Sinoatrial node. It is also referred to as pacemaker of the heart. SA node contracts the atria and the impulse transfers to AV node or Atrioventricular node.
This is followed by transfer of impulse to atrioventricular bundle fibers which further passes it on to Purkinje fibres for ventricular contraction. Now the blood is sent to lungs and aorta as per it's oxygen status.
Learn more about cardiac conduction system -
brainly.com/question/2813924
#SPJ4
Glycoprotein Cell Receptors, but you can probably just put proteins
It is only because of their life spand... its pretty short.