<h2>
Hello!</h2>
The answer is: There is a total of 5.797 gallons pumped during the given period.
<h2>
Why?</h2>
To solve this equation, we need to integrate the function at the given period (from t=0 to t=4)
The given function is:
![D(t)=\frac{5t}{1+3t}](https://tex.z-dn.net/?f=D%28t%29%3D%5Cfrac%7B5t%7D%7B1%2B3t%7D)
So, the integral will be:
![\int\limits^4_0 {\frac{5t}{1+3t}} \ dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E4_0%20%7B%5Cfrac%7B5t%7D%7B1%2B3t%7D%7D%20%5C%20dx)
So, integrating we have:
![\int\limits^4_0 {\frac{5t}{1+3t}} \ dt=5\int\limits^4_0 {\frac{t}{1+3t}} \ dx](https://tex.z-dn.net/?f=%5Cint%5Climits%5E4_0%20%7B%5Cfrac%7B5t%7D%7B1%2B3t%7D%7D%20%5C%20dt%3D5%5Cint%5Climits%5E4_0%20%7B%5Cfrac%7Bt%7D%7B1%2B3t%7D%7D%20%5C%20dx)
Performing a change of variable, we have:
![1+t=u\\du=1+3t=3dt\\x=\frac{u-1}{3}](https://tex.z-dn.net/?f=1%2Bt%3Du%5C%5Cdu%3D1%2B3t%3D3dt%5C%5Cx%3D%5Cfrac%7Bu-1%7D%7B3%7D)
Then, substituting, we have:
![\frac{5}{3}*\frac{1}{3}\int\limits^4_0 {\frac{u-1}{u}} \ du=\frac{5}{9} \int\limits^4_0 {\frac{u-1}{u}} \ du\\\\\frac{5}{9} \int\limits^4_0 {\frac{u-1}{u}} \ du=\frac{5}{9} \int\limits^4_0 {\frac{u}{u} -\frac{1}{u } \ du](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B3%7D%2A%5Cfrac%7B1%7D%7B3%7D%5Cint%5Climits%5E4_0%20%7B%5Cfrac%7Bu-1%7D%7Bu%7D%7D%20%5C%20du%3D%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%5Cfrac%7Bu-1%7D%7Bu%7D%7D%20%5C%20du%5C%5C%5C%5C%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%5Cfrac%7Bu-1%7D%7Bu%7D%7D%20%5C%20du%3D%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%5Cfrac%7Bu%7D%7Bu%7D%20-%5Cfrac%7B1%7D%7Bu%20%7D%20%5C%20du)
![\frac{5}{9} \int\limits^4_0 {(\frac{u}{u} -\frac{1}{u } )\ du=\frac{5}{9} \int\limits^4_0 {(1 -\frac{1}{u } )](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%28%5Cfrac%7Bu%7D%7Bu%7D%20-%5Cfrac%7B1%7D%7Bu%20%7D%20%29%5C%20du%3D%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%281%20-%5Cfrac%7B1%7D%7Bu%20%7D%20%29)
![\frac{5}{9} \int\limits^4_0 {(1 -\frac{1}{u })\ du=\frac{5}{9} \int\limits^4_0 {(1 )\ du- \frac{5}{9} \int\limits^4_0 {(\frac{1}{u })\ du](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%281%20-%5Cfrac%7B1%7D%7Bu%20%7D%29%5C%20du%3D%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%281%20%29%5C%20du-%20%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%28%5Cfrac%7B1%7D%7Bu%20%7D%29%5C%20du)
![\frac{5}{9} \int\limits^4_0 {(1 )\ du- \frac{5}{9} \int\limits^4_0 {(\frac{1}{u })\ du=\frac{5}{9} (u-lnu)/[0,4]](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%281%20%29%5C%20du-%20%5Cfrac%7B5%7D%7B9%7D%20%5Cint%5Climits%5E4_0%20%7B%28%5Cfrac%7B1%7D%7Bu%20%7D%29%5C%20du%3D%5Cfrac%7B5%7D%7B9%7D%20%28u-lnu%29%2F%5B0%2C4%5D)
Reverting the change of variable, we have:
![\frac{5}{9} (u-lnu)/[0,4]=\frac{5}{9}((1+3t)-ln(1+3t))/[0,4]](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B9%7D%20%28u-lnu%29%2F%5B0%2C4%5D%3D%5Cfrac%7B5%7D%7B9%7D%28%281%2B3t%29-ln%281%2B3t%29%29%2F%5B0%2C4%5D)
Then, evaluating we have:
![\frac{5}{9}((1+3t)-ln(1+3t))[0,4]=(\frac{5}{9}((1+3(4)-ln(1+3(4)))-(\frac{5}{9}((1+3(0)-ln(1+3(0)))=\frac{5}{9}(10.435)-\frac{5}{9}(1)=5.797](https://tex.z-dn.net/?f=%5Cfrac%7B5%7D%7B9%7D%28%281%2B3t%29-ln%281%2B3t%29%29%5B0%2C4%5D%3D%28%5Cfrac%7B5%7D%7B9%7D%28%281%2B3%284%29-ln%281%2B3%284%29%29%29-%28%5Cfrac%7B5%7D%7B9%7D%28%281%2B3%280%29-ln%281%2B3%280%29%29%29%3D%5Cfrac%7B5%7D%7B9%7D%2810.435%29-%5Cfrac%7B5%7D%7B9%7D%281%29%3D5.797)
So, there is a total of 5.797 gallons pumped during the given period.
Have a nice day!