Based on the information provided, it follows that there are 1,728 possible seating arrangements.
<h3>How can we find the number of possible arrangements?</h3>
To find the number of arrangements in this problem situation we must take into account the following key factors:
- Chris only has 1 possible seat.
- Jo has 2 possible seats.
- Dave, Alex, and Barb have 3 possible seats.
- Gareth, Fred, and Eddie have 3 possible seats.
- There are 4 other adults who do not have a preference in seats but have the possibility of using 4 seats.
According to the above, we must use the factorization of these numbers to find out the number of possibilities we have to seat them.
<h3>What is factoring?</h3>
A factorial function is a mathematical tool that is characterized by using the exclamation mark “!” behind a number. The factorial function is used to express that the number accompanied by the symbol must be multiplied by all positive integers between that number and 1.
In accordance with the above, in the problem situation that we must solve, we must use the factorial function with the possibilities of:
- Dave, Alex and Barb: 3! = 3 × 2 × 1 = 6
- Gareth, Fred and Eddie: 3! = 3 × 2 × 1 = 6
- Other 4 adults: 4! = 4 × 3 × 2 × 1 = 24
Subsequently, to calculate the number of total possibilities of the entire group we must multiply the possibilities of each group and individual as shown below:
- Number of possibilities = 1 × 2 × 6 × 6 × 24
- Number of possibilities = 1728
Learn more about the factorial function in: brainly.com/question/16674303
Answer:
Step-by-step explanation:
surface area of one can 2πrh+2πr²
=2πr(h+r)
≈2×3.14×3/2(4.25+1.5)
≈9.42(5.75)
≈54.165 in²
number of cans=1000/54.165
=18 cans
material used=18×54.165≈975 in²
material left=1000-975=25 in²
Shade in 9 boxes
12÷4= 3 (This is 1 fourth)
3×3=9 (This is 3 fourths)
Answer:
A and C
Step-by-step explanation:
B has a solution and D is 0. A and C are the only ones with no solution.
Answer:
M = 1/0.000121 = 8264.5 years
Step-by-step explanation:
M = − k ∫∞₀ teᵏᵗdt
To obtain this mean life, we'll use integration by parts to integrate the function ∫ teᵏᵗdt
∫udv = uv - ∫ vdu
u = t
du/dt = 1
du = dt
∫ dv = ∫ eᵏᵗdt
v = eᵏᵗ/k
∫udv = ∫ teᵏᵗdt
uv = teᵏᵗ/k
∫ vdu = eᵏᵗ/k
∫ teᵏᵗdt = (teᵏᵗ/k) - ∫eᵏᵗ/k
But, ∫eᵏᵗ/k = (1/k) ∫eᵏᵗ = (1/k²) eᵏᵗ = eᵏᵗ/k²
∫ teᵏᵗdt = (teᵏᵗ/k) - eᵏᵗ/k²
The rest of the calculation is done on paper in the image attached to this question