satellite originally moves in a circular orbit of radius R around the Earth. Suppose it is moved into a circular orbit of radius 4R.
(i) What does the force exerted on the satellite then become?
eight times larger<span>four times larger </span>one-half as largeone-eighth as largeone-sixteenth as large(ii) What happens to the satellite's speed?<span>eight times larger<span>four times larger </span>one-half as largeone-eighth as largeone-sixteenth as large(iii) What happens to its period?<span>eight times larger<span>four times larger </span>one-half as largeone-eighth as largeone-sixteenth as large</span></span>
<span>
</span>
Hi , the answer is false ,atoms can be divided into smaller parts , electrons , protons and neutrons.
Answer:
The answer to the question is
The ladybug begins to slide
Explanation:
To solve the question we assume that the frictional force of the ladybug and the gentleman bug are the same
Where the frictional force equals
= μ×N = m×g×μ
and the centripetal force is given by m·ω²·r
If we denote the properties of the ladybug as 1 and that of the gentleman bug as 2, we have
m₁×g×μ = m₁·ω²·r₁ ⇒ g×μ = ω²·r₁
and for the gentleman bug we have
m₂×g×μ = m₂·ω²·r₂ ⇒ g×μ = ω²·r₂
But r₁ = 2×r₂
Therefore substituting the values of r₁ =2×r₂ we have
g×μ = ω²·r₁ = g×μ = ω²·2·r₂
Therefore ω²·r₂ = 0.5×g×μ for the ladybug. That is the ladybug has to overcome half the frictional force experienced by the gentleman bug before it start to slide
The ladybug begins to slide
Sample Response: The water is cooler than the sand because it has a higher specific heat value. This means that it takes longer for the water to increase in temperature, making it feel cooler than the sand, which warms up more quickly.