1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovikov84 [41]
3 years ago
14

What could you do to increase the electric force between two charged particles by a factor of 16?

Physics
1 answer:
oee [108]3 years ago
5 0
Hopefully this will help you. 

You might be interested in
Resistors 1 and 2− R1 = 50 Ω , R2 = 90 Ω − are connected in series to a 6.0-V battery. Part APart complete What is the potential
kondor19780726 [428]

Answer:

Part A: The voltage across resistor R1 is approximately \rm 2.1 \; V.

Part B: When the value of resistor R1 decreases, the current in this circuit will increase.

Part C: When the value of resistor R1 decreases, the voltage across resistor R1 will decrease.

Explanation:

<h3>Part A</h3>

Resistor R1 and and R2 are connected in series. That's equivalent to a single resistor of R_1 + R_2 = 50 + 90 = 140\; \Omega. The voltage across the two resistor, combined, is equal to \rm 6\; V. Hence by Ohm's Law, the current through the circuit will be equal to \rm \dfrac{6\; V}{140\; \Omega} = \dfrac{3}{70}\; A.

These two resistors are connected in series. The voltage across each of them might differ. However, the current through each of them should both be equal to the current through the circuit. In this case, the current through both R1 and R2 should be equal to \rm \dfrac{3}{70}\; A. Apply Ohm's Law (again) to find the voltage across R1:

V = I \cdot R = \dfrac{3}{70} \times 50 \approx \rm 2.1\; V.

<h3>Part B</h3>

Since the equivalent resistance is equal to R_1 + R_2, when the value of R_1 decreases, the equivalent resistance will also decrease. By Ohm's Law, I = \dfrac{V}{R}. When the value of the denominator ( decreases, the value of the quotient, I the current through the circuit, will increase.

<h3>Part C</h3>

Keep in mind that if two resistors are connected in series,

I(R_1) = I(\text{Circuit}) = I(R_2).

The resistance of R1 decreases, while the current through it increases. Applying Ohm's Law on R1 won't give much useful information. However, since the resistance of R2 stays the same, the voltage across it will increase when its current increases (again by Ohm's Law.)

Again, since the two resistors are connected in series,

V(R_1) + V(R_2) = V(\text{Circuit}) = \rm 6 \; V,

when the voltage across R2 increases, the voltage across R1 will decrease.

4 0
3 years ago
The Higher The Value Of Coefficient Of Friction The _____ The Resistance To Sliding.
Vadim26 [7]
Lower the resistance to sliding.
7 0
3 years ago
A charming friend of yours who has been reading a little bit about astronomy accompanies you to the campus observatory and asks
lidiya [134]

Answer:

b

Explanation:

3 0
3 years ago
If the distance between two objects is increased,the gravitational attraction between them will.....?
tia_tia [17]

The attraction will decrease. Hope I helped :)

4 0
3 years ago
Read 2 more answers
Assume the earth to be a nonrotating sphere with mass MEME and radius RERE. If an astronaut weights WW on the ground, what is hi
Solnce55 [7]

Answer:

The weight at a distance 2 RE from surface of earth is <em>W/9</em>

Explanation:

For the value of acceleration due to gravity (g), we have a formula, that is:

g = (G)(ME)/(RE)²    ----- equation (1)

where,

G = Gravitational Constant

ME = Mass of Earth

RE = Radius of Earth

g = Acceleration due to gravity on surface of earth = 9.8 ms²

When the person goes 2RE, distance above earth's surface. Then the total distance from center of earth becomes: 2RE + RE = 3RE.

Therefore, equation (1) becomes:

gh = (G)(ME)/(3RE)²

where,

gh = acceleration due to gravity at height

gh = (G)(ME)/(RE)²9

using equation (1), we get:

gh = g/9

Now, he weight is given by formula:

W = mg   ------- equation (2)

At height 2RE

Wh = (m)(gh)

where,

Wh = Weight at height = ?

m = mass of astronaut

Therefore, using vale of gh, we get:

Wh = mg/9

Using equation (2), we get:

<u>Wh = W/9</u>

6 0
3 years ago
Other questions:
  • What is the resultant resistance of the circuit in the image shown?
    12·1 answer
  • You wish to place a spacecraft in a circular orbit around the earth so that its orbital speed will be 4.00×103m/s. What is this
    13·1 answer
  • A man of mass 80 kg runs up a flight of stairs 20 m high in 10 s. (a) how much power is used to lift the man? (b) If the man’s b
    12·1 answer
  • a tiger leaps horizontally from a 5.7m high rock with a speed of 4.1m/s. How far from the base of the rock will she land
    13·1 answer
  • When water falls through a dam and turns a turbine connected
    7·1 answer
  • In case of frequency of light what changes​
    14·1 answer
  • Give two examples of situations or applications where electronic circuits and electric circuits are used together​
    13·1 answer
  • What happens if 5 Protons combine with 4 neutrons.
    7·2 answers
  • when a bucket full of water is pulled of from a well,in which condition: either inside or outside the water is it difficult to l
    15·2 answers
  • A football is kicked from ground level with an initial velocity of 20.2 m/s at angle of 43.0 above the horizontal. How long, in
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!