Answer:
1.69515 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

The distance between the traffic and the car after braking is 120-64.06 = 55.94 m
Time = Distance / Speed

The reaction time cannot be more than 1.69515 seconds
Both have positive charge. In fact, an alpha particle IS a nucleus of a Helium atom.
Kinetic energy is defined as the energy of motion. On the other hand, potential energy is the energy of non-motion.
Hope that helped =)
Centripetal acceleration is directed along a radius so it may also be called the radial acceleration. If the speed is not constant, then there is also a tangential acceleration (at). The tangential acceleration is, indeed, tangent to the path of the particle's motion.
Answer:
32s
Explanation:
We must establish that by the time the police car catches up to the speeder, both have travelled a certain distance during the same amount of time. However, the police car experiences accelerated motion whereas the speeder travels at a constant velocity. Therefore we will establish two formulas for distance starting with the speeder's distance:

and the police car distance:

Since they both travel the same distance x, we can equal both formulas and solve for t:

Two solutions exist to the equation; the first one being 
The second solution will be:

This result allows us to confirm that the police car will take 32s to catch up to the speeder