Answer:
<em><u>1)A)</u></em>
<em><u>1)A)2)A)</u></em>
<h3><em><u>Hope it helps you </u></em><em><u>♡</u></em><em><u>♡</u></em></h3>
Answer:
Maximum height of rocket = 2538.74 m
Explanation:
We have equation of motion s = ut + 0.5 at²
For first 5 seconds
s = 0 x 5 + 0.5 x 40 x 5² = 500 m
Now let us find out time after 5 seconds rocket move upward.
We have the equation of motion v = u + at
After 5 seconds velocity of rocket
v = 0 + 40 x 5 = 200 m/s
After 5 seconds the velocity reduces 9.8m/s per second due to gravity.
Time of flying after 5 seconds

Distance traveled in this 20.38 s
s = 200 x 20.38 - 0.5 x 9.81 x 20.38² = 2038.74 m
Maximum height of rocket = 500 +2038.74 = 2538.74 m
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>