Answer : The final volume of the balloon at this temperature and pressure is, 17582.4 L
Solution :
Using combined gas equation is,
where,
= initial pressure of gas = 1 atm
= final pressure of gas = 0.3 atm
= initial volume of gas = 6000 L
= final volume of gas = ?
= initial temperature of gas = 273 K
= final temperature of gas = 240 K
Now put all the given values in the above equation, we get the final pressure of gas.

Therefore, the final volume of the balloon at this temperature and pressure is, 17582.4 L
Answer:
a)
= 928 J
, b)U = -62.7 J
, c) K = 0
, d) Y = 11.0367 m, e) v = 15.23 m / s
Explanation:
To solve this exercise we will use the concepts of mechanical energy.
a) The elastic potential energy is
= ½ k x²
= ½ 2900 0.80²
= 928 J
b) place the origin at the point of the uncompressed spring, the spider's potential energy
U = m h and
U = 8 9.8 (-0.80)
U = -62.7 J
c) Before releasing the spring the spider is still, so its true speed and therefore the kinetic energy also
K = ½ m v²
K = 0
d) write the energy at two points, maximum compression and maximum height
Em₀ = ke = ½ m x²
= mg y
Emo = 
½ k x² = m g y
y = ½ k x² / m g
y = ½ 2900 0.8² / (8 9.8)
y = 11.8367 m
As zero was placed for the spring without stretching the height from that reference is
Y = y- 0.80
Y = 11.8367 -0.80
Y = 11.0367 m
Bonus
Energy for maximum compression and uncompressed spring
Emo = ½ k x² = 928 J
= ½ m v²
Emo =
Emo = ½ m v²
v =√ 2Emo / m
v = √ (2 928/8)
v = 15.23 m / s
Answer:B
Explanation:
Given
speed of car 
mass of clump 
Radius of car tire 
Since the tire is rotating about axle so a centripetal force is acting constantly on each particle towards the center of tire.
Centripetal force is given by

where 



(inward)
Neither technician is correct.
Please don't touch my car.
Answer:

Explanation:
From the question we are told that:
Frequency of 3rd harmonics 
Frequency of 5th harmonics 
Generally the equation for Wavelength at 3rd Harmonics is mathematically given by

Therefore

Generally the equation for Wavelength at 1st Harmonics is mathematically given by

Therefore

Generally the equation for the frequency of the first harmonic is mathematically given by


