Answer:
![= \left[\begin{array}{ccc}1344\\84\\28\end{array}\right] \left \begin{array}{ccc}{0 \ \leq age \leq 1 }\\{ 1 \ \leq age \leq 2 }\\{2 \ \leq age \leq 3}\end{array}\right](https://tex.z-dn.net/?f=%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1344%5C%5C84%5C%5C28%5Cend%7Barray%7D%5Cright%5D%20%20%5Cleft%20%5Cbegin%7Barray%7D%7Bccc%7D%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%201%20%7D%5C%5C%7B%201%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%202%20%7D%5C%5C%7B2%20%5C%20%20%5Cleq%20%20age%20%20%5Cleq%203%7D%5Cend%7Barray%7D%5Cright)
i.e after the first year ;
there 1344 members in the first age class
84 members for the second age class; and
28 members for the third age class
Step-by-step explanation:
We can deduce that the age distribution vector x represents the number of population members for each age class; Given that in each class of age there are 112 members present.
The current age distribution vector is as follows:
![x = \left[\begin{array}{ccc}1&1&2\\1&1&2\\1&1&2\end{array}\right] \left[\begin{array}{ccc}{0 \ \leq age \leq 1 }\\{ 0 \ \leq age \leq 2 }\\{0 \ \leq age \leq 3}\end{array}\right]](https://tex.z-dn.net/?f=x%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%262%5C%5C1%261%262%5C%5C1%261%262%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%201%20%7D%5C%5C%7B%200%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%202%20%7D%5C%5C%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%203%7D%5Cend%7Barray%7D%5Cright%5D)
Also , the age transition matrix is as follows:
![L = \left[\begin{array}{ccc}3&6&3\\0.75&0&0 \\0&0.25&0\end{array}\right]](https://tex.z-dn.net/?f=L%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%266%263%5C%5C0.75%260%260%20%5C%5C0%260.25%260%5Cend%7Barray%7D%5Cright%5D)
After 1 year ; the age distribution vector will be :
![x_2 =Lx_1 = \left[\begin{array}{ccc}3&6&3\\0.75&0&0 \\0&0.25&0\end{array}\right] \left[\begin{array}{ccc}1&1&2\\1&1&2\\1&1&2\end{array}\right]](https://tex.z-dn.net/?f=x_2%20%3DLx_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%266%263%5C%5C0.75%260%260%20%5C%5C0%260.25%260%5Cend%7Barray%7D%5Cright%5D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%262%5C%5C1%261%262%5C%5C1%261%262%5Cend%7Barray%7D%5Cright%5D)
![= \left[\begin{array}{ccc}1344\\84\\28\end{array}\right] \left \begin{array}{ccc}{0 \ \leq age \leq 1 }\\{ 1 \ \leq age \leq 2 }\\{2 \ \leq age \leq 3}\end{array}\right](https://tex.z-dn.net/?f=%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1344%5C%5C84%5C%5C28%5Cend%7Barray%7D%5Cright%5D%20%20%5Cleft%20%5Cbegin%7Barray%7D%7Bccc%7D%7B0%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%201%20%7D%5C%5C%7B%201%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%202%20%7D%5C%5C%7B2%20%5C%20%20%5Cleq%20%20age%20%20%20%5Cleq%20%203%7D%5Cend%7Barray%7D%5Cright)
In mathematics, a rational number is a number that can be expressed as the quotient or fraction p/q of two integers, a numerator p and a non-zero denominator q. Since q may be equal to 1, every integer is a rational number.
The amount of the paint that Ellis needs to paint all the surfaces of the 12 fenceposts will be 226.08 square feet.
<h3>What is a cylinder?</h3>
A cylinder is a closed solid that has two parallel circular bases connected by a curved surface.
Ellis is painting wooden fenceposts before putting them in his yard. They are each 6 feet tall and have a diameter of 1 foot. There are 12 fenceposts in all.
The amount of the paint that Ellis needs to paint all the surfaces of the 12 fenceposts will be
The area of the one fence post will be
Area = πdh
Area = 3.14 x 1 x 6
Area = 18.84 square feet
Then the paint for 12 fence posts will be
Total area = 12 x 18.84
Total area = 226.08 square feet
More about the cylinder link is given below.
brainly.com/question/3692256
#SPJ1
Plug the coordinate pairs into the equation. The first value is the x, and the second value is why. Solve the equation and if the answer on both sides is the same number, the coordinate pair satisfied the equation