Answer:
100
Step-by-step explanation:
The answer for this question is to treat people the way you want to be treated if you want the answer click the link below
Answer:9 adult tickets and 2 kid tickets
Step-by-step explanation:
Using a discrete probability distribution, it is found that:
a) There is a 0.3 = 30% probability that he will mow exactly 2 lawns on a randomly selected day.
b) There is a 0.8 = 80% probability that he will mow at least 1 lawn on a randomly selected day.
c) The expected value is of 1.3 lawns mowed on a randomly selected day.
<h3>What is the discrete probability distribution?</h3>
Researching the problem on the internet, it is found that the distribution for the number of lawns mowed on a randomly selected dayis given by:
Item a:
P(X = 2) = 0.3, hence, there is a 0.3 = 30% probability that he will mow exactly 2 lawns on a randomly selected day.
Item b:

There is a 0.8 = 80% probability that he will mow at least 1 lawn on a randomly selected day.
Item c:
The expected value of a discrete distribution is given by the <u>sum of each value multiplied by it's respective probability</u>, hence:
E(X) = 0(0.2) + 1(0.4) + 2(0.3) + 3(0.1) = 1.3.
The expected value is of 1.3 lawns mowed on a randomly selected day.
More can be learned about discrete probability distributions at brainly.com/question/24855677
Answer:
Step-by-step explanation:
Given are 3 data sets with values as:
(i) 8 9 10 11 12 ... Mean =10
(ii) 7 9 10 11 13 ... Mean =10
(iii) 7 8 10 12 13 ... Mean =10
We see that data set shows mean deviations as
(i) -2 -1 0 1 2
(ii) -3 -1 0 1 3
(iii) -3 -2 0 2 3
Since variance is the square of std deviation, we find that std deviation is larger when variance is larger.
Variance is the sum of squares of (x-mean). Whenever x-mean increases variance increases and also std deviation.
Hence we find that without calculations also (i) has least std dev followed by (ii) and then (iii)
(i) (ii) (iii) is the order.
b) Between (i) and (ii) we find that 3 entries are the same and 2 entries differ thus increasing square by 9-4 twice. But between (ii) and (iii) we find that
increase in square value would be 4-1 twice. Obviously the latter is less.