Answer:
¿Quieres respuestas personalizadas verificadas por un tutor? ¡Pruebe Brainly Tutor y obtenga ayuda de un profesional en minutos!
Step-by-step explanation:
Answer:
Picture
Step-by-step explanation:
I graphed them
Answer:
A) The best way to picture this problem is with a probability tree, with two steps.
The first branch, the person can choose red or blue, being 2 out of five (2/5) the chances of picking a red marble and 3 out of 5 of picking a blue one.
The probabilities of the second pick depends on the first pick, because it only can choose of what it is left in the urn.
If the first pick was red marble, the probabilities of picking a red marble are 1 out of 4 (what is left of red marble out of the total marble left int the urn) and 3 out of 4 for the blue marble.
If the first pick was the blue marble, there is 2/4 of chances of picking red and 2/4 of picking blue.
B) So a person can have a red marble and a blue marble in two ways:
1) Picking the red first and the blue last
2) Picking the blue first and the red last
C) P(R&B) = 3/5 = 60%
Step-by-step explanation:
C) P(R&B) = P(RB) + P(BR) = (2/5)*(3/4) + (3/5)*(2/4) = 3/10 + 3/10 = 3/5
Answer:
Mean = 6.25
Step-by-step explanation:
Data values: 4, 5, 6, 10
Mean = (Sum of all values)/(Number of values)
Mean = (4 + 5 + 6 + 10)/4
Mean = 25/4
Mean = 6.25
Split up the integration interval into 4 subintervals:
![\left[0,\dfrac\pi8\right],\left[\dfrac\pi8,\dfrac\pi4\right],\left[\dfrac\pi4,\dfrac{3\pi}8\right],\left[\dfrac{3\pi}8,\dfrac\pi2\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac%5Cpi8%5Cright%5D%2C%5Cleft%5B%5Cdfrac%5Cpi8%2C%5Cdfrac%5Cpi4%5Cright%5D%2C%5Cleft%5B%5Cdfrac%5Cpi4%2C%5Cdfrac%7B3%5Cpi%7D8%5Cright%5D%2C%5Cleft%5B%5Cdfrac%7B3%5Cpi%7D8%2C%5Cdfrac%5Cpi2%5Cright%5D)
The left and right endpoints of the
-th subinterval, respectively, are


for
, and the respective midpoints are

We approximate the (signed) area under the curve over each subinterval by

so that

We approximate the area for each subinterval by

so that

We first interpolate the integrand over each subinterval by a quadratic polynomial
, where

so that

It so happens that the integral of
reduces nicely to the form you're probably more familiar with,

Then the integral is approximately

Compare these to the actual value of the integral, 3. I've included plots of the approximations below.