Explanation:
Scientist use trees a whole lot to look at climate of the past by examining tree rings.
These are layers of cambium in each successive years formed. They have an annual growth pattern and are known as tree rings.
Tree rings can be used to decipher the age of a tree.
- These three rings can be used to interpret climatic patterns.
- During a wet climate, the tree rings are more robust and bigger.
- In a dry climate, the rings are thinner.
- These alternating patterns can be used to decipher the climatic signatures in a tree.
- Sometimes, it is possible to evaluate some certain isotopes that are useful in climatic studies.
learn more:
Climate change brainly.com/question/7824762
#learnwithBrainly
Given the fact that we are seeing a rise in the temperature of the globe, the artic animals in that ecosystem must adapt by a reduction in the rate of metabolism.
<h3>What is global warming?</h3>
Several evidences continue to emerge that the temperature of the earth have continued to increase and this is largely due to the fact that since the turn of the twentieth century and the rise of industrialization, there have been a rise in the emission of the carbon dioxide and other green house gases into the environment. As a result of this, the temperature of the earth has continued to rise steadily leading to the melting of the ice cover and the destruction of ecosystems that are found around the artic regions of the earth.
Now, we know that an organism is able to adapt to the changes that occur in its habitat by being able to alter some of its structure and function.
Given that the organisms that live in the artic are adapted to cold regions and low temperatures, the metabolic rate of the organisms is high in order to produce heat.
As a result of the rise in global temperatures, the organisms would have to reduce their rate of metabolism.
Learn more about global warming:brainly.com/question/12908180
#SPJ1
Answer:
It is at the greater angle (higher solar elevation) that the surface area receives the most energy because the rays are spread out less. ... The smaller the elevation angle (30°, 20°, 10°) the less energy received per square centimeter, because the rays spread out over a greater area.
Explanation:
correct me if I'm wrong
Answer:
19.29 g.cm⁻³
Solution:
Data Given:
Mass = 301 g
Volume = 15.6 cm³
Formula Used:
Density = Mass ÷ Volume
Putting values,
Density = 301 g ÷ 15.6 cm³
Density = 19.29 g.cm⁻³