Answer:
Mass of KNO3 in the original mix is 146.954 g
Explanation:
mass of
in original 254.5 mixture.
moles of 
moles of
= 0.2926 mol of BaSO4
Therefore,
0.2926 mol of BaCl2,
mass of 
= 60.92 g
the AgCl moles 

= 1.3891 mol of AgCl
note that, the Cl- derive from both,
so
mole of Cl- f NaCl
mol of Cl-
mol of NaCl = 0.8039 moles

then
KNO3 mass = 254.5 - 60.92-46.626 = 146.954 g of KNO_3
Mass of KNO3 in the original mix is 146.954 g
Answer:
The energy of a vibrating molecule is quantized much like the energy of an electron in the hydrogen atom. The energy levels of a vibrating molecule are given by the equation: En=(n+21)hv where n is a quantum number with possible values of 1, 2, ... and v is the frequency of vibration.
Explanation:
hope it helps.
have a wonderful day!
H₂ is the limiting reactant.
<u>Explanation:</u>
H₂ reacts with O₂
The reaction would be
2H₂ + O₂ → 2H₂O
According to the balanced equation, 2 moles of H₂ reacts with 1 mole of O₂ to form 2 moles of H₂O.
The ratio of usage of H₂ and O₂ is 2 : 1 respectively
If 3 moles of H₂ and 2 moles of O₂ are present then:
3 moles of H₂ would require 1.5 moles of O₂ ( 2 : 1 of H₂ and O₂ )
Out of 2 moles of O₂, 1.5 moles would be used and 0.5 mole would be in excess.
Therefore, H₂ is the limiting reactant as the number of moles of H₂ are not enough to use all the O₂.