1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lutik1710 [3]
4 years ago
8

A student missed 10 problems on a history test and received a grade of 17%. If all the problems were of equal value, how many pr

oblems were on the test?
Mathematics
1 answer:
belka [17]4 years ago
8 0

Answer:

12 problems

Step-by-step explanation:

All problems were of equal value

Let x be the number of problems in the test

We apply a rule of three

x -------------------------------  100%

(x-10) --------------------------- 17%

(x-10)*100%/(x)   = 17%

(x-10)/(x)   = 0.17

(x-10)   = 0.17*x

0.83*x = 10

x = 12.05

x = 12 problems

You might be interested in
Anyone mind helping me ?
storchak [24]

Answer:

<GOJ

Step-by-step explanation:

O is the center of the circle

So central angle is <GOJ

3 0
3 years ago
Which of the following best describes the nitrogen fixation process?(1 point) Consumers convert nitrogen gas into ammonia, nitri
nordsb [41]

Answer:

Soil bacteria convert nitrogen gas into ammonia, nitrites, and then nitrates. Nitrates are then absorbed by producers.

Step-by-step explanation:

.

7 0
2 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Mrs. Smith asked her students to make observations about the histogram, Annual Rainfall of Cities.
kakasveta [241]

Answer:

Maria and Antonio

Step-by-step explanation:

sorry if it's wrong

5 0
2 years ago
Write an expression that is equivalent to
lisov135 [29]

Answer:

½a - 4 = ? ( a - ?)

1a - 8 = -7a ( a - ?)

= ( a- 7a)

= ( -6a)

6 0
3 years ago
Other questions:
  • What is the value of cosθ given that (−2, −3) is a point on the terminal side of θ ?
    5·1 answer
  • Consider that lines B and C are parallel. What is the value of x? What is the measure of the smaller angle?
    5·1 answer
  • Which ordered pair is a solution of the equation y = –5/4x – 2?
    7·1 answer
  • A used boat dealership buys a boat for $2990 and sells it for $4200. what is percent increase?
    6·1 answer
  • I need help who ever answers first will be given braniest
    5·2 answers
  • Evaluate z + z + z for x = 2, y = -3, z = -4.<br><br> 12<br> -12<br> -9<br> -6<br><br> Need help!!
    15·1 answer
  • The temperature falls from 0 degrees to -125 degrees in 3 hours. Which expression finds the change in . temperature per hour? 07
    14·1 answer
  • A department store buys shirts at a cost of ​$ and sells them at a selling price of ​$ each. Find the percent markup.
    10·2 answers
  • For any value of x, the sum <br> 3<br> ∑ k(2x-1) <br> k=0<br> is equivalent to
    8·1 answer
  • 2x to the 2 power minus 14x + 24
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!