Answer:
Okay, Left top= waning gibbous
left second= new moon
left third= third quarter
left fourth= waxing crescent
right top= Waning crescent
right second= first quarter
right third= full moon
right fourth= Waxing gibbous
hope you do good :)
The first step of the oxidation of a primary alcohol involves conversion to an aldehyde via the elimiination of a hydrogen molecule. Thus, ClCH2CH2CH2OH becomes ClCH2CH2COH, which is 3-chloropropanal.
I honestly don’t know sorry
The correct question is as follows: 0.500 moles of potassium oxide is dissolved in enough water to make 2.00 L of solution. Calculate the molarity of this solution (plz help!)
Answer: The molarity of this solution is 0.25 M.
Explanation:
Molarity is the number of moles of a substance divided by volume in liter.
As it is given that there are 0.5 moles of potassium oxide in 2.00 L of water so, the molarity of this solution is calculated as follows.

Thus, we can conclude that molarity of this solution is 0.25 M.
Answer:
0.7457 g is the mass of the helium gas.
Explanation:
Given:
Pressure = 3.04 atm
Temperature = 25.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (25.0 + 273.15) K = 298.15 K
Volume = 1.50 L
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
3.04 atm × 1.50 L = n × 0.0821 L.atm/K.mol × 298.15 K
<u>⇒n = 0.1863 moles</u>
Molar mass of helium = 4.0026 g/mol
The formula for the calculation of moles is shown below:
Thus,

<u>0.7457 g is the mass of the helium gas. </u>