reactants because it had other chemicals, when more are mixed it will be more stronger.
It is the correct answer
<span>Oil and water don't mix because oil is made up of non-polar molecules while water molecules are polar in nature. Because water molecules are electrically charged, they get attracted to otherwater molecules and exclude the oil molecules. (this is from wiki)</span>
Answer:- B:
is the right answer.
Solution:- The balanced equation is:

We have been given with 8.75 grams of oxygen and asked to calculate the grams of hydrogen needed to react with given grams of oxygen according to the balanced equation.
From balanced equation, 1 mole of oxygen reacts with 2 moles of hydrogen.
So, let's convert grams of oxygen to moles and multiply it by the mole ratio to calculate the moles of hydrogen that are easily converted to grams on multiplying by it's molar mass.
The complete set up looks as:

= 
Hence, the right option is B:
.
1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
<h3>What is an ideal gas equation?</h3>
The ideal gas equation, pV = nRT, is an equation used to calculate either the pressure, volume, temperature or number of moles of a gas. The terms are: p = pressure, in pascals (Pa). V = volume, in
.
We apply the formula of the ideal gases, we clear n (number of moles); we use the ideal gas constant R = 0.082 l atm / K mol:
PV= nRT
Given data:
P=100.0 kPa =0.986923 atm
T=100 degree celcius= 100 + 273 =373 K
V=35.5 L
Substituting the values in the equation.
n= 
n= 1.137448506 mol
Hence, 1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
Learn more about ideal gas here:
brainly.com/question/16552394
#SPJ1