Reduce carbon dioxide emissions, pollution, and deforestation
reuse materials rather than throwing them away and needing to create more
recycle materials like metals, paper, and plastics
replace non-biodegradable materials with biodegradable
A trait is a characteristic, such as color or size, that is inherited by an offspring from its parents. The genes that control a trait come in pairs, one gene from each parent. We represent these gene pairs by writing a combination of two letters. For example, if one parent contributes a gene for blue eyes (c), and other parent contributes a gene for brown eyes(C), then we write the offspring’s eye color trait as Cc. This combination, of the two genes that determine the trait, is called a genotype. If gene pair contains a dominant allele, the the offspring will show this dominant trait
Trees remove Carbo Dioxide from the atmosphere, they produce oxygen, and they make soil healthier and more arable. I hope this helps! Brainliest would be great. Comment below if it helped.
<span>Ozone is simply a molecule consisting of 3 oxygen atoms, which reacts strongly with other molecules. Ozone is created in the stratosphere when high energy uv radiation causes on O2 molecule to split. The free oxygen atoms collide and react with other O2 molecules to form O3.</span>
Production is highest where the solar uv is the greatest eg near the tropics, but once created, the ozone is then circulated towards the poles by the atmosphere. The amount of ozone in the stratosphere can vary with location, season and even day to day climatic conditions.
<span>The process of ozone creation is what makes the O3 in the atmosphere very effective at shielding the Earth from harmful uv radiation, which can cause many biological problems, such as skin cancer. However, due to its high reactivity, the uv found in the tropospher at ground level can aslo be dangerous as a toxic pollutant which is harmful to plants and lung tissue, and is a major cause of smog.</span>
Answer:
Thermosensitive liposomes (TSL) are promising tools used to deliver drugs to targeted region when local hyperthermia is applied (∼40–42°C) which triggers the membrane phase transformation from a solid gel-like state to a highly permeable liquid state. Selective lipid components have been used to in TSL formulations to increase plasma stability before hyperthermia and speed drug release rate after. Two generations of TSL technology have been developed. The traditional thermal sensitive liposomes (TTSL) have utilized DPPC and DSPC as a combination. The second generation, lysolipid thermally sensitive liposomes (LTSL) technology, has been developed with incorporation of lysolipids that form stabilized defects at phase transition temperature. LTSL maintains certain favorable attributes:
High percentage of lysolipids incorporation;
Minimum leakage for therapeutical drugs encapsulation;
Ultrafast drug release upon heating (3.5 times enhanced compared to TTSL). For example, ThermoDox, a commonly used LTSL drug for cancer, has been reported to release 100% of the encapsulated doxorubicin within 30s;
First and most successful formulation for intravascular drug release.
Explanation:
https://www.creative-biostructure.com/Lysolipid-Thermally-Sensitive-Liposomes-Production-612.htm