Answer:
Given the system of equation:
g +h = 9 ......[1]
8g + 7.5h = 71 ......[2]
We can write equation [1] as;
g = 9-h ......[3]
Now, substitute equation [3] in [2] we get;

Using distributive property i,e
.
72 - 8h +7.5h = 71
Combine like terms:
72 - 0.5 h = 71
Subtract 72 to both sides of an equation:
72 - 0.5 h -72 = 71-72
Simplify:
- 0.5 h = -1
Divide both sides by -0.5 we get;

Simplify:
h = 2
Substitute the value of h =2 in equation [3] to solve for g;
g = 9 - 2 = 7
g = 7
Therefore, the solution for the given equation is :
g = 7 and h = 2
1 is the answer because it is
Answer:
9:34 pm
Step-by-step explanation:
First:
8:17 am
Go back 12 hours
8:17 pm
Round to 8:20
(keep the 3) Minus 43-17=26(3 is in this)
Therefore, 9:34 pm
Sorry if this doesn't make sense, it's hard to explain haha
Answer:
Step-by-step explanation:
- The length of the segment JM is 25 units.
- The segment JL is between 0 and 12, so is 12 units.
- The segment KL is between 5 and 12, so is 7 units.
<u>The probabilities for each point:</u>
- P(point on JL) = 12/25
- P(point not on KL) = 1 - 7/25 = 18/25
<u>Required probability:</u>
- P = 12/25*18/25 = 216/625
Correct choice is D
Irfan must walk a distance of <u>25</u> blocks <u>east</u> to return to his apartment building.
<h3>What is a compass?</h3>
A compass can be defined as a scientific instrument that contains a magnetized pointer, which is used to show and indicate the following four (4) main cardinal directions:
<h3>What is distance?</h3>
Distance can be defined as the amount of ground covered (traveled) by a physical object over a specific period of time and speed, regardless of its direction, starting point or ending point.
Next, we would calculate the total distance covered (traveled) by Irfan as follows:
Total distance = 20 + 5
Total distance = 25 blocks.
Since Irfan walked a total distance of 25 blocks west, he would have to walk the same distance in the opposite direction (east) to return to his apartment building.
Read more on total distance here: brainly.com/question/19460590
#SPJ1