Sorry, but I can't help unless you post a diagram or picture. If you can't, what about a written description?
Answer:
E - Be and O
A - Mg and N
E - Li and Br
F - Ba and Cl
B - Rb and O
Explanation:
Be and O
Be is a metal that loses 2 e⁻ to form Be²⁺ and O is a nonmetal that gains 2 e⁻ to form O²⁻. For the ionic compound to be neutral, it must have the form BeO (E-MX).
Mg and N
Mg is a metal that loses 2 e⁻ to form Mg²⁺ and N is a nonmetal that gains 3 e⁻ to form O³⁻. For the ionic compound to be neutral, it must have the form Mg₃N₂ (A-M₃X₂).
Li and Br
Li is a metal that loses 1 e⁻ to form Li⁺ and Br is a nonmetal that gains 1 e⁻ to form Br⁻. For the ionic compound to be neutral, it must have the form LiBr (E-MX).
Ba and Cl
Ba is a metal that loses 2 e⁻ to form Ba²⁺ and Cl is a nonmetal that gains 1 e⁻ to form Cl⁻. For the ionic compound to be neutral, it must have the form BaCl₂ (F-MX₂).
Rb and O
Rb is a metal that loses 1 e⁻ to form Rb⁺ and O is a nonmetal that gains 2 e⁻ to form O²⁻. For the ionic compound to be neutral, it must have the form Rb₂O (B-M₂X).
Answer:
eight
Explanation:
Each shell can contain only a fixed number of electrons: The first shell can hold up to two electrons, the second shell can hold up to eight (2 + 6) electrons, the third shell can hold up to 18 (2 + 6 + 10) and so on.
The appropriate response is high. The best approach to consider it is those molecules have more vitality than the normal and it is unequivocally those higher enthusiastic ones that have enough vitality to break the intra-molecular forces and leave. By the way this is the reason when we sweat we chill off - the most enthusiastic molecules vanish diverting warmth.