Answer: Option (c) is the correct answer.
Explanation:
Activation energy or free energy of a transition state is defined as the minimum amount of energy required to by reactant molecules to undergo a chemical reaction.
So, when activation energy is decreased then molecules with lesser amount of energy can also participate in the reaction. This leads to an increase in rate of reaction.
Also, increase in temperature will help in increasing the rate of reaction.
Whereas at a given temperature, every molecule will have different energy because every molecule travels at different speed.
Hence, we can conclude that out of the given options false statement is that at a given temperature and time all molecules in a solution or a sample will have the same energy.
Answer:
Which statements describe how chemical formulas, such as H2O, represent compounds? ... They show the elements that make up a compound. They show the types of atoms that make up a molecule. They show the number of each type of atom in a molecule.
This is an aplication of Le Chatelier Principle. So, if you need further details about the theory behind the answer, search for this subject.
Here is the answer and the explanation.
You can realize that 1 mol of reactant produce 2 moles of products, which means that the trend of the reaction is to increase the volume (at constant pressure) or to increase the pressure (at constant volume). If you realease the pressure by increasing the volume, Le Chaelier principle permit you to predict a displacement of the equilibrium to the right (to the products). This is, because the equilibrium will try to restore (increase) the pressure by producing more molecules.
So, the answer is the option B. There will be a shift toward the products.
Answer:
2 electrons
Explanation:
Since the atomic structure is at it's neutral state
Answer:
Energy can neither be created nor destroyed, but it does change its form. And not all forms of energy are usable and it gets dissipated as heat energy and sound energy. The energy that is wasted cannot be recovered.