Answer:
The dimension of the sandbox is (2x+1) by (x - 3)
Step-by-step explanation:
It seems the complete question will be:
The area of sandbox in park is represented by 2X^2-5x-3 find the dimensions of the sandbox in terms of x.
Step-by-step explanation:
From the question, the given expression is 2X^2-5x-3. This can be rewritten as

If the area of the sandbox in park is represented by this expression, then the dimensions of the sandbox will be the product of the factors. To determine the factors, we will factorize the given quadratic expression.
Factorizing the expression
, we get



Hence, the dimension of the sandbox is (2x+1) by (x - 3)
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2
Answer:
<h2>a = 1</h2>
Step-by-step explanation:
